Mitochondrial DNA variation in cultivated and wild potato species (Solanum spp.)Contribution No. 87 from the Institute of Plant Genetics, Research Division of Portici.

Genome ◽  
2007 ◽  
Vol 50 (8) ◽  
pp. 706-713 ◽  
Author(s):  
N. Scotti ◽  
S. Cozzolino ◽  
T. Cardi

The European cultivated potato, Solanum tuberosum subsp. tuberosum , has 6 related cultivated species and more than 200 wild relatives. In Solanum spp., studies of cytoplasmic organelles have been mainly confined to the plastid DNA composition of cultivated and wild species. In this study, 53 genotypes of 30 potato species belonging to the subsections Estolonifera and Potatoe , 2 tomato species, and a black nightshade genotype were examined using PCR markers to evaluate mitochondrial DNA diversity and assess whether mtDNA variability was correlated with series classification, geographical origin, ploidy, and endosperm balance number (EBN). The markers used revealed interspecific mtDNA variability in Solanum spp. and identified 13 different haplotypes. Intraspecific variability was also observed in a few species and genomic regions. Cluster analysis allowed arrangement of the 13 haplotypes into 7 subgroups, and statistical association tests showed significant relationships between mitochondrial patterns detected by molecular analysis and ploidy, EBN, and geographical origin. On the whole, the evolutionary patterns for the genomic regions analyzed reflected the species relationships established on the basis of morphological and molecular (nuclear and plastidial DNA) data. The mtDNA variability shown is also important for better characterization of genetic resources for potato breeding.


2011 ◽  
Vol 101 (9) ◽  
pp. 1074-1080 ◽  
Author(s):  
X. K. Cai ◽  
D. M. Spooner ◽  
S. H. Jansky

A major justification for taxonomic research is its assumed ability to predict the presence of traits in a group for which the trait has been observed in a representative subset of the group. Similarly, populations in similar environments are expected to be more alike than populations in divergent environments. Consequently, it is logical to assume that taxonomic relationships and biogeographical data have the power to predict the distribution of disease resistance phenotypes among plant species. The objective of this study was to test predictivity in a group of widely distributed wild potato species, based on hypotheses that closely related organisms (taxonomy) or organisms from similar environments (biogeography) share resistance to a simply inherited trait (Potato virus Y [PVY]). We found that wild potato species with an endosperm balance number (EBN) of 1 (a measure of cross compatibility) shared resistances to PVY more than species with different EBN values. However, a large amount of variation was found for resistance to PVY among and within species. We also found that populations from low elevations were more resistant than those from high elevations. Because PVY is vectored by aphids, we speculate that the distribution of aphids may determine the level of selection pressure for PVY resistance.



2010 ◽  
Vol 01 (02) ◽  
pp. 95-103 ◽  
Author(s):  
Angelina Nunziata ◽  
Valentino Ruggieri ◽  
Nicola Greco ◽  
Luigi Frusciante ◽  
Amalia Barone


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 869-885 ◽  
Author(s):  
Franklin W. Santillan ◽  
Cesar E. Fribourg ◽  
Ian P. Adams ◽  
Adrian J. Gibbs ◽  
Neil Boonham ◽  
...  

Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSAand PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSOand two PVSAisolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSAand PVSOelicited similar foliage symptoms. Following graft inoculation, all except two PVSOisolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSAand PVSO. Myzus persicae transmitted all nine PVSAisolates but none of the three PVSOisolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSAisolates but less than 21 days for the three PVSOisolates. Dilution end points were 10−3for two PVSOisolates but 10−4to 10−6with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.



2014 ◽  
Vol 40 (1) ◽  
pp. 45 ◽  
Author(s):  
Fei LI ◽  
Jian-Fei XU ◽  
Jie LIU ◽  
Shao-Guang DUAN ◽  
Chun-Song BIAN ◽  
...  


2019 ◽  
Vol 41 (5) ◽  
Author(s):  
Dorota Sołtys-Kalina ◽  
Zofia Murawska ◽  
Danuta Strzelczyk-Żyta ◽  
Iwona Wasilewicz-Flis ◽  
Waldemar Marczewski


2013 ◽  
Vol 11 (2) ◽  
pp. 131-139 ◽  
Author(s):  
D. Carputo ◽  
D. Alioto ◽  
R. Aversano ◽  
R. Garramone ◽  
V. Miraglia ◽  
...  

The evolutionary diversity of wild potato species makes them excellent materials for improving the narrow genetic basis of the cultivated potato Solanum tuberosum. Understanding their genetic diversity is important not only to choose the best parents for breeding, but also to design proper crossing schemes and selection strategies. The objectives of this study were to determine the resistance response to Ralstonia solanacearum, Potato virus Y and low temperatures of 21 clones of 12 potato species, and to determine their genetic diversity through simple sequence repeat (SSR) markers. Sources of resistance have been found for all the investigated traits, with high resistance variability not only between but also within species. Combined resistances were also identified, with positive implications for efficient breeding. SSR analysis allowed the detection of 12 loci and 46 alleles across all genotypes, with an average value of 3.8 alleles per locus. Both unique and rare alleles useful for marker-assisted selection were found. SSR-based cluster analysis revealed that resistant genotypes were distributed among all clusters, suggesting that genetically different resistant genotypes were identified. The information obtained in this study is discussed from a breeding perspective.



Crop Science ◽  
1998 ◽  
Vol 38 (3) ◽  
pp. 858-865 ◽  
Author(s):  
A. M. Clausen ◽  
D. M. Spooner


2020 ◽  
Vol 24 (5) ◽  
pp. 465-473
Author(s):  
I. V. Totsky ◽  
I. V. Rozanova ◽  
A. D. Safonova ◽  
A. S. Batov ◽  
Yu. A. Gureeva ◽  
...  

Potato (Solanum tuberosum L.) is one of the most important food crops in the world. The genome of this potato species is autotetraploid and has a high level of heterozygosity, also this potato species is a cross-pollinated plant. These characteristics complicate the genetic analysis and breeding process. The tuber’s eye depth is an important trait that affects the suitability of potato varieties for processing. Potato breeding for this trait is based on phenotypic assessment. Identification of the loci that control tuber eye depth would allow diagnostic markers for the marker-assisted selection to be created. The aim of this study is to search for loci associated with the eye depth by analyzing Solanum tuberosum varieties from the GenAgro collection of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, genotyped using the Illumina 22K SNP potato array DNA chip. The 24 significant markers associated with the “eye depth” trait were identified using 15,214 SNP markers genotyped with the Illumina 22K SNP potato array chip and the general linear model (GLM) taking into account the population structure. Data obtained showed the presence of SNPs in four genomic regions: on chromosome 4 (1 marker in the 3.92 Mb area), 5 (1 marker in the 4.67 Mb area) and 10 (1 marker in the 4.87 Mb area and 21 markers in the region between 48.1–48.9 Mb). The results of localization in the region 48.1–48.9 Mb of chromosome 10 correspond to previously published studies, the remaining three regions were detected for the first time. DNA sections containing SNPs linked to the tuber’s eye depth were studied in the SolTub_3.0 potato genome assembly (https:// plants.ensembl.org/). KASP markers were developed based on the data obtained. It will be possible to screen the breeding material and to breed the varieties more effectively using current markers associated with a shallow tuber’s eye depth.



Sign in / Sign up

Export Citation Format

Share Document