Characterization of genomes of timothy (Phleum pratense L.). I. Karyotypes and C-banding patterns in cultivated timothy and two wild relatives

Genome ◽  
1991 ◽  
Vol 34 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Q. Cai ◽  
M. R. Bullen

In an attempt to know the phylogeny of timothy (Phleum pratense), the cultivated species and two wild relatives, Phleum alpinum and Phleum bertolonii, were karyotyped with conventional and Giemsa C-banding methods. In the hexaploid P. pratense (2n = 6x = 42), two sets of seven chromosomes were indistinguishable from each other both in morphology and in banding patterns and the third set of seven was found to be differentiated from them. Two genomes, A and B, were tentatively established. The banded karyotype in diploid P. alpinum (2n = 2x = 14) was close to the A genome, which was tetraploid in P. pratense, and the karyotype in P. bertolonii (2n = 2x = 14) was analogous to the B genome in P. pratense, which suggests these species were the genome donors of P. pratense.Key words: chromosome, genome, allopolyploid, Giemsa C-banding.

Genome ◽  
1987 ◽  
Vol 29 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Q. Cai ◽  
S. Lu ◽  
C. C. Chinnappa

The karyotypes and Giemsa C-banding patterns of the chromosomes in eight species of Arachis L. have been studied. Six species are diploid with 20 chromosomes and two are tetraploid with 40 chromosomes. One diploid species (A. rigonii Krap. et Greg.) belongs to the sect. Erectoides and the rest belong to the sect. Arachis. Among the diploid species from the sect. Arachis, A. batizocoi Krap. et Greg, has a unique karyotype while others have similar karyotypes. Two tetraploid species, A. monticola Krap. et Greg, and A. hypogaea L., possess the most similar karyotypes. However, the diploid species, A. rigonii, from sect. Erectoides, has a karyotype distinguishable from those in sect. Arachis. The C-banding patterns of the chromosomes have been obtained for all the species. The centromeric bands have been found in all the chromosomes and the intercalary bands can be identified in a varied number of chromosomes among these complements. However, the telomeric bands only exist in one or two chromosomes. The comparison of banding patterns demonstrated that structural differences exist among the chromosomal complements of the species with similar chromosome morphology. The karyotype variation among the different species and interspecific relationship are discussed. It is suggested that all the diploid species with the A genome are closely related. There are close relationships between the tetraploid species and diploid species with the A or B genome within sect. Arachis. Key words: Arachis, cytology, karyotypes, Giemsa C-banding.


2019 ◽  
Vol 4 (2) ◽  
pp. 4180-4181
Author(s):  
Guangxin Cui ◽  
Yuan Lu ◽  
Xiaoxing Wei ◽  
Xiaoli Wang ◽  
Chunmei Wang ◽  
...  

Genome ◽  
1990 ◽  
Vol 33 (3) ◽  
pp. 360-368 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira ◽  
B. L. Jones ◽  
G. L. Lookhart

For many years each of the species Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Aegilops speltoides, and Triticum urartu has been implicated as the donor of the B genome in the polyploid wheats. Biochemical and cytological data have revealed that T. urartu possesses a genome similar to that of T. monococcum, and therefore it may be the source of the A genome in T. turgidum and T. aestivum. This revelation therefore excludes T. urartu from the list of putative B-genome donors. To determine which of the remaining species is the source of the B chromosome set, the amino acid sequences of their purothionins were compared with that of the α1 purothionin coded for by the Pur-1B gene on chromosome 1 in the B genome of T. turgidum and T. aestivum. The residue sequences of this protein from Ae. bicornis, Ae. longissima, Ae. searsii, Ae. sharonensis, and Ae. speltoides differed by 1, 6, 1, 1, and 2 amino acid substitutions, respectively, from the α1 protein. These results suggest that either Ae. bicornis, Ae. searsii, or Ae. sharonensis was the most likely donor of the B genome. If the B genome in the polyploid wheats is monophyletic in origin, the collective findings of this and other investigations indicate that Ae. searsii is the most likely donor. The possibility that the B genome in the polyploid wheats could have a polyphyletic origin is also discussed.Key words: polyploid wheats, putative B-genome donors, purothionins, monophyletic, polyphyletic.


1983 ◽  
Vol 25 (3) ◽  
pp. 210-214 ◽  
Author(s):  
J. Dvořák

Triticum aestivum chromosome "4A" is, like the B genome chromosomes, extensively heterochromatic while the remaining six A genome chromosomes are not. In the presence of the Ph gene it does not pair with any chromosome of einkorn wheats, T. monococcum and T. urartu, the source of the A genome. It is shown here that the same chromosome is also present in T. timopheevii which represents the other evolutionary lineage of wheats. The "4A" chromosomes of T. timopheevii and T. aestivum pair poorly with each other, like the B genome chromosomes of the two lineages, while the remaining A genome chromosomes, except for one arm, pair relatively well. Hence, in both lineages chromosome "4A" has the attributes of the B genome chromosomes, not of the A genome chromosomes. The C-banding pattern of chromosome "4A" of T. aestivum and T. timopheevii closely resembles the C-banding pattern of a chromosome of T. speltoides and less closely chromosome 4B1 of T. sharonense. On the basis of this and other evidence it is concluded that this chromosome was contributed by a species of the section Sitopsis and, consequently, belongs to the B genome. Additionally, there is evidence that the chromosome that was originally designated "4B" belongs to the A genome.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 542-555 ◽  
Author(s):  
B. Friebe ◽  
N.-S. Kim ◽  
J. Kuspira ◽  
B. S. Gill

Cytogenetic studies in Triticum monococcum (2n = 2x = 14) are nonexistent. To initiate such investigations in this species, a series of primary trisomics was generated from autotriploids derived from crosses between induced autotetraploids and diploids. All trisomics differed phenotypically from their diploid progenitors. Only two of the seven possible primary trisomic types produced distinct morphological features on the basis of which they could be distinguished. The chromosomes in the karyotype were morphologically very similar and could not be unequivocally identified using standard techniques. Therefore, C-banding was used to identify the chromosomes and trisomics of this species. Ag–NOR staining and in situ hybridization, using rDNA probes, were used to substantiate these identifications. A comparison of the C-banding patterns of the chromosomes of T. monococcum with those of the A genome in Triticum aestivum permitted identification of five of its chromosomes, viz., 1A, 2A, 3A, 5A, and 7A. The two remaining chromosomes possessed C-banding patterns that were not equivalent to those of any of the chromosomes in the A genome of the polyploid wheats. When one of these undesignated chromosomes from T. monococcum var. boeoticum was substituted for chromosome 4A of Triticum turgidum, it compensated well phenotypically and therefore genetically for the loss of this chromosome in the recipient species. Because this T. monococcum chromosome appeared to be homoeologous to the group 4 chromosomes of polyploid wheats, it was designated 4A. By the process of elimination the second undesignated chromosome in T. monococcum must be 6A. Analysis of the trisomics obtained led to the following conclusions. (i) Trisomics for chromosome 3A were not found among the trisomic lines analyzed cytologically. (ii) Primary trisomics for chromosomes 2A, 4A, 6A, and 7A were positively identified. (iii) Trisomics for the SAT chromosomes 1A and 5A were positively identified in some cases and not in others because of polymorphism in the telomeric C-band of the short arm of chromosome 1A. (iv) Trisomics for chromosome 7A were identified on the basis of their distinct phenotype, viz., the small narrow heads and small narrow leaves. Because rRNA hybridizes lightly to nucleolus organizer regions on chromosome 1A and heavily to nucleolus organizer regions on chromosome 5A, our results indicate that trisomics in line 50 carry chromosome 1A in triple dose and trisomics in lines 28 and 51 carry chromosome 5A in triplicate. Variable hybridization of the rDNA probe to nucleolus organizer regions on chromosomes in triple dose in lines 7, 20, and 28 precluded the identification of the extra chromosome in these lines. Cytogenetic methods for unequivocally identifying trisomics for chromosomes 1A and 5A are discussed. Thus six of the series of primary trisomics have been identified. Telotrisomic lines are also being produced.Key words: Triticum monococcum, trisomics, C-banding, Ag-NOR staining, in situ hybridization, rDNA probes, plant morphology.


2016 ◽  
Vol 6 (12) ◽  
pp. 3825-3836 ◽  
Author(s):  
Ratan Chopra ◽  
Gloria Burow ◽  
Charles E Simpson ◽  
Jennifer Chagoya ◽  
Joann Mudge ◽  
...  

Abstract To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.


1978 ◽  
Vol 20 (2) ◽  
pp. 199-204 ◽  
Author(s):  
J. P. Gustafson ◽  
K. D. Krolow

Three tetraploid triticales were analysed by C-banding techniques in order to establish their chromosome constitutions. All three tetraploid triticales contained seven rye chromosomes with the banding pattern of Secale cereale L. A mixture of A- and B-genome chromosomes from Triticum turgidum L. constituted the wheat genome present in the tetraploid triticales. Triticale Trc 4x3 contained 1A, 2B, 3A, 4A, 5B, 6A, and 7B. Triticale Trc 4x2 contained 1A, 2B, 3B, 4B, 5B, 6A, and 7B, while triticale Trc 4x5 contained 1A, 2B, 3B, 4A, 5A, 6A, and 7B. The reliability of the staining technique is subject to errors in identification, which are discussed.


Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 656-663 ◽  
Author(s):  
R. I. Tayyar ◽  
A. J. Lukaszewski ◽  
J. G. Waines

Somatic karyotypes of the nine annual species of Cicer (2n = 16) were analyzed using C-banding. Highly significant differences in haploid genome length and C-band positive heterochromatin content were observed. The haploid genome length ranged from 20.0 μm in the wild species C. judaicum to 28.7 μm in the cultivated species C. arietinum, and significant differences for this character were observed between accessions within several species. Based on their heterochromatin content, the species were divided into two groups: low heterochromatin content (average of 41.7%), which included C. arietinum, C. chorassanicum, C. echinospermum, C. judaicum, C. pinnatifidum, C. reticulatum, and C. yamashitae, and high heterochromatin content (average of 59.5%), which included C. bijugum and C. cuneatum. Within-group variation for heterochromatin content was insignificant, while differences between groups were highly significant. There seemed to be a trend for reduction in C-heterochromatin content in the course of evolution in Cicer. In all species studied, C-bands were located proximally around the centromere with occasional bands in intercalary and distal positions. C-banding patterns allowed for chromosome identification and matching pairs of homologues in all species analyzed.Key words: C-banding, chickpea, heterochromatin, karyotype.


1974 ◽  
Vol 24 (1) ◽  
pp. 103-108 ◽  
Author(s):  
A. T. Natarajan ◽  
N. P. Sarma

SUMMARYThe distribution of heterochromatic regions in the chromosomes of diploid, tetraploid and hexaploid wheat shows that the B genome possesses characteristic large blocks. Though analyses of probable B genome donors indicate that Aegilops speltoides has a pattern of distribution of heterochromatin nearest to the B genome chromosomes, a polyphyletic origin of tetraploid wheat seems more plausible.


Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 627-632 ◽  
Author(s):  
A. Fominaya ◽  
C. Vega ◽  
E. Ferrer

Giemsa C-banding was used to identify individual somatic chromosomes in eight diploid species of Avena. Two patterns of heterochromatin distribution were found. The chromosomes of five A genome species (A. strigosa, A. hirtula, A. longiglumis, A. damascena, and A. canariensis) possessed mainly telomeric bands, whereas those from three C genome species (A. clauda, A. pilosa, and A. ventricosa) were characterized by higher chromatin condensation and several intercalary heterochromatin bands. The divergent evolution between the two groups is confirmed after C-banding. The unique C-banding patterns of several chromosomes in each species will be a useful tool for the study of meiotic behaviour in interspecific hybrids among Avena spp.Key words: C-banding, Avena, heterochromatin.


Sign in / Sign up

Export Citation Format

Share Document