genome length
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 33)

H-INDEX

26
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2030
Author(s):  
Elena V. Romanova ◽  
Yurij S. Bukin ◽  
Kirill V. Mikhailov ◽  
Maria D. Logacheva ◽  
Vladimir V. Aleoshin ◽  
...  

There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Milto Simoes Junior ◽  
Kyle S. MacLea

Ureibacillus terrenus TH9A T (=ATCC BAA-384 T ) was isolated from uncultivated soil in Italy in 1995. We present a draft genome sequence for the type strain, with a predicted genome length of 2,936,851 bp, containing 2,766 protein-coding genes, 82 RNA genes, and 5 CRISPR arrays, with a G+C content of 42.5%.


2021 ◽  
Vol 10 (47) ◽  
Author(s):  
Isabel Amaya ◽  
Duyen Bui ◽  
Ariel Egbunine ◽  
Ember Mushrush ◽  
Maggie Viland ◽  
...  

Bacteriophage EasyJones is a myovirus infecting Mycobacterium smegmatis mc 2 155, with a genome length and gene content similar to those of phages grouped in subcluster C1. Interestingly, EasyJones contains a gene found in a subset of C1 genomes that is similar to the well-characterized immunity repressor of subcluster A1 mycobacteriophage Bxb1.


2021 ◽  
Vol 8 (11) ◽  
pp. 285
Author(s):  
Lingxia Li ◽  
Jinyan Wu ◽  
Xiaoan Cao ◽  
Jijun He ◽  
Xiangtao Liu ◽  
...  

The peste des petits ruminants virus (PPRV) mainly infects goats and sheep and causes a highly contagious disease, PPR. Recently, a PPRV strain named ChinaSX2020 was isolated and confirmed following an indirect immunofluorescence assay and PCR using PPRV-specific antibody and primers, respectively. A sequencing of the ChinaSX2020 strain showed a genome length of 15,954 nucleotides. A phylogenetic tree analysis showed that the ChinaSX2020 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaSX2020 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. These findings revealed that not a variety of PRRVs but similar PPRVs were continuously spreading and causing sporadic outbreaks in China.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009449
Author(s):  
Shahab Sarmashghi ◽  
Metin Balaban ◽  
Eleonora Rachtman ◽  
Behrouz Touri ◽  
Siavash Mirarab ◽  
...  

The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k-mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had < 1.5% error in length estimation compared to 34% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e=.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1202
Author(s):  
Leny Calano Galvez ◽  
Rhosener Bhea Lu Koh ◽  
Cris Francis Cortez Barbosa ◽  
Jayson Calundre Asunto ◽  
Jose Leonido Catalla ◽  
...  

Abaca (Musa textilis Née), an indigenous crop to the Philippines, is known to be the source of the strongest natural fiber. Despite its huge economic contributions, research on crop improvement is limited due to the lack of genomic data. In this study, the whole genome of the abaca var. Abuab was sequenced using Illumina Novaseq 6000 and Pacific Biosciences Single-Molecule Real-Time Sequel. The genome size of Abuab was estimated to be 616 Mbp based on total k-mer number and volume peak. Its genome was assembled at 65× depth, mapping 95.28% of the estimated genome size. BUSCO analysis recovered 78.2% complete BUSCO genes. A total of 33,277 gene structures were predicted which is comparable to the number of predicted genes from recently assembled Musa spp. genomes. A total of 330 Mbp repetitive elements were also mined, accounting to 53.6% of the genome length. Here we report the sequencing and genome assembly of the abaca var. Abuab that will facilitate gene discovery for crop improvement and an indispensable source for genetic diversity studies in Musa.


2021 ◽  
Author(s):  
Anthony Chamings ◽  
Tarka Raj Bhatta ◽  
Soren Alexandersen

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly in the global population since its emergence in humans in late 2019. Replication of SARS-CoV-2 is characterised by transcription and replication of genomic length RNA and shorter subgenomic RNAs to produce virus proteins and ultimately progeny virions. Here we explore the pattern of both genome-length and subgenomic RNAs and positive and negative strand SARS-CoV-2 RNAs in diagnostic nasopharyngeal swabs using sensitive probe based PCR assays as well as Ampliseq panels designed to target subgenomic RNAs. Using these assays, we measured the ratios of genomic to subgenomic RNAs as well as the ratios of positive to negative strand RNAs in SARS-CoV-2 positive nasopharyngeal swab samples. We found that while subgenomic RNAs and negative strand RNA can be readily detected in swab samples taken up to 19 and 17 days post symptom onset respectively, and therefore their detection alone is not likely an indicator of active SARS-CoV-2 replication. However, the ratios of genomic-length to subgenomic RNA and also of positive to negative strand RNA were elevated in some swabs, particularly those collected around the onset of clinical symptoms or in an individual with decreasing PCR Cts in successive swab samples. We tentatively conclude that it may be possible to refine such molecular assays to help determine if active replication of virus is occurring and progeny virions likely present in a SARS-CoV-2 positive individual. Assays targeting subgenomic N or ORF7a RNAs as well as strand specific ORF7a total genome-length and subgenomic RNAs may be the most sensitive for this purpose as these targets were consistently the most abundant in the swab samples.


2021 ◽  
Author(s):  
Ruirui Ma ◽  
Jie Zhao ◽  
Ruirui Lv ◽  
She Guo ◽  
Xia Chen

Abstract Lactobacillus plantarum phage P2 was isolated and purified from failed MRS fermentation broth of Lactobacillus plantarum IMAU10120. Its morphology indicates this phage belongs to Siphoviridae family. Its genome length was 77,937 bp and the G+C content was 39.28 %, including 96 coding sequences (CDS) and 2 tRNA genes. Through genomic and phylogenetic analysis, it revealed that Lactobacillus plantarum phage P2 is a novel phage. The predicted proteins were involved in DNA replication and packaging, virus metabolism and host adsorption or lysis were found.


2021 ◽  
Author(s):  
Jason N. Bundy ◽  
Charles Ofria ◽  
Richard E. Lenski

AbstractGould’s thought experiment of “replaying life’s tape” provides a conceptual framework for experiments that quantify the contributions of adaptation, chance, and history to evolutionary outcomes. For example, we can empirically measure how varying the depth of history in one environment influences subsequent evolution in a new environment. Can this “footprint of history”—the genomic legacy of prior adaptation—grow too deep to overcome? Can it constrain adaptation, even with intense selection in the new environment? We investigated these questions using digital organisms. Specifically, we evolved ten populations from one ancestor under identical conditions. We then replayed evolution from three time points in each population’s history (corresponding to shallow, intermediate, and deep history) in two new environments (one similar and one dissimilar to the prior environment). We measured the contributions of adaptation, chance, and history to the among-lineage variation in fitness and genome length in both new environments. In both environments, variation in genome length depended largely on history and chance, not adaptation, indicating weak selection. By contrast, adaptation, chance, and history all contributed to variation in fitness. Crucially, whether the depth of history affected adaptation depended on the environment. When the ancestral and new environments overlapped, history was as important as adaptation to the fitness achieved in the new environment for the populations with the deepest history. However, when the ancestral and novel environments favored different traits, adaptation overwhelmed even deep history. This experimental design for assessing the influence of the depth of history is promising for both biological and digital systems.


2021 ◽  
Vol 10 (14) ◽  
Author(s):  
Fernando E. Nieto-Fernandez ◽  
Christos Noutsos ◽  
John Kleopoulos ◽  
Olubusola Babalola ◽  
Belle L. Connaught ◽  
...  

ABSTRACT HarryOW and Peeb are Mycobacterium smegmatis mc2 155 Siphoviridae temperate phages with 52,935 and 41,876 base pairs in genome length, respectively. HarryOW belongs to the A1 subcluster and Peeb to the G1 subcluster. They were isolated and annotated by students from the SUNY Old Westbury Science and Technology Entry Program.


Sign in / Sign up

Export Citation Format

Share Document