Haldane's rule and heterogametic female and male sterility in the mouse

Genome ◽  
1994 ◽  
Vol 37 (2) ◽  
pp. 198-202 ◽  
Author(s):  
Fred G. Biddle ◽  
Brenda A. Eales ◽  
Wendy L. Dean

Failed genetic experiments or experiments designed for other purposes sometimes reveal novel genetic information. The interspecific cross between laboratory strain mice of the Mus musculus musculus/domesticus complex and the separate species M. spretus is known to produce fertile F1 females and sterile F1 males. Infertility of the interspecific F1 XY male is said to be an example of what has become known as Haldane's rule: "When in the F1 offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous [heterogametic] sex." We attempted to use fertile single-X (or XO) female laboratory mice of the M. m. musculus/domesticus complex mated to M. spretus males to construct females with specific X chromosomes to study segregation distortion of X chromosome marker genes that we reported previously in crosses with the two species. We assumed that the interspecific F1 XO female would be fertile like the interspecific F1 XX female but, instead, we found that it is infertile. Haldane's rule is not specific to sex, but demonstration of this has required study of separate species pairs with heterogametic males or with heterogametic females. The fertile XO laboratory mouse is female, but it is also heterogametic, producing both X and nullo-X eggs. Infertility of both the interspecific and heterogametic F1 XO female and F1 XY male in the same cross between laboratory mice and M. spretus suggests that heterogamety is at the cause of the infertility. The most parsimonious interpretation is that there is an interaction between the single X and heterozygous or heterospecific autosomes that may affect the same fundamental step in both female and male meiosis in the interspecific F1 hybrid. This hypothesis is now testable in the mouse.Key words: interspecific crosses, mouse, Haldane's rule.

Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 389-392 ◽  
Author(s):  
Fred G. Biddle

An interspecific cross was made between females of the C3H/HeHa.Pgk-1a inbred laboratory strain of Mus musculus and males of the separate species Mus spretus. The F1 males are sterile but the F1 females are fertile and they were backcrossed to both C3H and spretus males. Evidence is presented from the segregation of X-linked marker genes that the interspecific F1female has a genetically deleterious effect on the C3H X chromosome that is expressed as a male-lethal effect with the spretus Y chromosome but not with the musculus Y chromosome of C3H. Key words: interspecific crosses, mouse, segregation distortion.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 791-799
Author(s):  
M J Wade ◽  
N A Johnson ◽  
G Wardle

Abstract Haldane's rule states that, in interspecific crosses, when hybrid viability or fertility is diminished more in one sex of the hybrids than in the other, the heterogametic sex is more adversely affected. We used quantitative genetic methods to investigate the genetic basis of variation for the expression of the viability aspect of Haldane's rule when Tribolium castaneum males are crossed to Tribolium freemani females. Using a half-sib design, we found significant genetic variance for the expression of Haldane's rule, i.e., variation among T. castaneum sires in the hybrid sex ratios produced by their sons. We also derived 23 independent lineages from the same base population by 8 generations of brother-sister mating. From the same experiments, we also found heritable variation among surviving hybrid males in the incidence of antennal deformities. Upon inbreeding, the variance of both traits (hybrid sex ratio and proportion deformities) increased substantially but the means changed little. Because fitness within T. castaneum lineages declined substantially with inbreeding, we infer that hybrid male viability may have a different genetic basis than viability fitness within species. Deleterious recessive alleles held within species by mutation/selection balance appear not to be a major contributor to hybrid incompatibility.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 603-607
Author(s):  
Ling-Wen Zeng

Evolution ◽  
2005 ◽  
Vol 59 (5) ◽  
pp. 1016-1026 ◽  
Author(s):  
Michel Slotman ◽  
Alessandra Della Torre ◽  
Jeffrey R. Powell

2013 ◽  
Vol 9 (5) ◽  
pp. 20130327 ◽  
Author(s):  
Matthew Schrader ◽  
Rebecca C. Fuller ◽  
Joseph Travis

Crosses between populations or species often display an asymmetry in the fitness of reciprocal F 1 hybrids. This pattern, referred to as isolation asymmetry or Darwin's Corollary to Haldane's Rule, has been observed in taxa from plants to vertebrates, yet we still know little about which factors determine its magnitude and direction. Here, we show that differences in offspring size predict the direction of isolation asymmetry observed in crosses between populations of a placental fish, Heterandria formosa . In crosses between populations with differences in offspring size, high rates of hybrid inviability occur only when the mother is from a population characterized by small offspring. Crosses between populations that display similarly sized offspring, whether large or small, do not result in high levels of hybrid inviability in either direction. We suggest this asymmetric pattern of reproductive isolation is due to a disruption of parent–offspring coadaptation that emerges from selection for differently sized offspring in different populations.


Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 425-432
Author(s):  
A POMIANKOWSKI ◽  
L D HURST

2021 ◽  
Author(s):  
Janne Swaegers ◽  
Rosa Ana Sanchez-Guillen ◽  
Pallavi Chauhan ◽  
Maren Wellenreuther ◽  
Bengt Hansson

Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and allow to shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridisation. Moreover, they are thought to contribute to Haldane's rule which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes and (ii) that males are underrepresented among admixed individuals as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data adds to the few studies on species with X0 sex determination system and contradicts the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.


Sign in / Sign up

Export Citation Format

Share Document