offspring size
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 42)

H-INDEX

46
(FIVE YEARS 1)

PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001495
Author(s):  
Andrew I. Furness ◽  
Chris Venditti ◽  
Isabella Capellini

The trade-off between offspring size and number is central to life history strategies. Both the evolutionary gain of parental care or more favorable habitats for offspring development are predicted to result in fewer, larger offspring. However, despite much research, it remains unclear whether and how different forms of care and habitats drive the evolution of the trade-off. Using data for over 800 amphibian species, we demonstrate that, after controlling for allometry, amphibians with direct development and those that lay eggs in terrestrial environments have larger eggs and smaller clutches, while different care behaviors and adaptations vary in their effects on the trade-off. Specifically, among the 11 care forms we considered at the egg, tadpole and juvenile stage, egg brooding, male egg attendance, and female egg attendance increase egg size; female tadpole attendance and tadpole feeding decrease egg size, while egg brooding, tadpole feeding, male tadpole attendance, and male tadpole transport decrease clutch size. Unlike egg size that shows exceptionally high rates of phenotypic change in just 19 branches of the amphibian phylogeny, clutch size has evolved at exceptionally high rates in 135 branches, indicating episodes of strong selection; egg and tadpole environment, direct development, egg brooding, tadpole feeding, male tadpole attendance, and tadpole transport explain 80% of these events. By explicitly considering diversity in parental care and offspring habitat by stage of offspring development, this study demonstrates that more favorable conditions for offspring development promote the evolution of larger offspring in smaller broods and reveals that the diversity of parental care forms influences the trade-off in more nuanced ways than previously appreciated.


Author(s):  
Andres Hagmayer ◽  
Martin J. Lankheet ◽  
Judith Bijsterbosch ◽  
Johan L. van Leeuwen ◽  
Bart J. A. Pollux

How pregnant mothers allocate limited resources to different biological functions such as maintenance, somatic growth, and reproduction can have profound implications for early life development and survival of offspring. Here we examined the effects of maternal food restriction during pregnancy on offspring in the matrotrophic (i.e. mother-nourishment throughout gestation) live-bearing fish species Phalloptychus januarius (Poeciliidae). We fed pregnant females either with a ‘low-food’ or ‘high-food’ ration for six weeks and quantified the consequences for offspring size and body fat at birth and one week after birth. We further measured fast-start escape performance of offspring at birth, as well as swimming kinematics during prey capture at zero, two, and seven days after birth. We found that the length of maternal food restriction during pregnancy negatively affected offspring dry mass and lean dry mass at birth, as well as body fat gain during the first week after birth. Moreover, it impacted the locomotor performance of offspring during prey capture at, and during the first week after, birth. We did not observe an effect of food restriction on fast-start escape performance of offspring. Our study suggests that matrotrophic poeciliid fish are maladapted to unpredictably fluctuating resource environments, because sudden reductions in maternal food availability during pregnancy result in smaller offspring with slower postnatal body fat gain and an inhibition of postnatal improving swimming skills during feeding, potentially leading to lower competitive abilities after birth.


Author(s):  
Hakimeh Teiri ◽  
Mohammad Reza Samaei ◽  
Mansooreh Dehghani ◽  
Abooalfazl Azhdarpoor ◽  
Yaghoub Hajizadeh ◽  
...  

2021 ◽  
Author(s):  
◽  
Sergio Antonio Carrasco Órdenes

<p>Initial maternal provisioning has pervasive ecological and evolutionary implications for species with direct development, influencing offspring size and energetic content, with subsequent effects on performance, and consequences in fitness for both offspring and mother. Here, using three sympatric marine intertidal direct developing gastropods as model organisms (Cominella virgata, Cominella maculosa and Haustrum scobina) I examined how contrasting strategies of maternal investment influenced development, hatchling size, maternal provisioning and juvenile performance. In these sympatric whelks, duration of intra-capsular development was similar among species (i.e. 10 wk until hatching); nonetheless, differences in provisioning and allocation were observed. Cominella virgata (1 embryo per capsule; ~3 mm shell length [SL]) and C. maculosa (7.7 ± 0.3 embryos per capsule; ~1.5 mm SL) provided their embryos with a jelly-like albumen matrix and all embryos developed. Haustrum scobina encapsulated on average 235 ± 17 embryos per capsule but only ~10 reached the hatching stage (~1.2 mm SL), with the remaining siblings being consumed as nurse embryos, mainly during the first 4 wk of development. Similar chronology in the developmental stages was recognizable among species. Higher growth rates and evident juvenile structures became clear by the second half of development and larval characteristics were less frequently observed. Even after 10 weeks of encapsulation and despite emergent crawling juveniles, some hatchling H. scobina still retained “larval” traits, suggesting that this nurse embryo-based provisioning could result in intracapsular asynchrony of development, and that female of this species would be able to bet-hedge in a higher extent compared with female C. maculosa or C. virgata. Maternal investment in newly laid egg capsules differed among the three study species. The structural lipids phospholipid (PL) and cholesterol (ST) and the energetic lipids aliphatic hydrocarbon (AH), triglycerides (TG), diglycerides (DG) and free fatty acids (FFA) occurred in all three species. Only eggs (and also hatchlings) of the multiencapsulated embryos C. maculosa and H. scobina were provisioned with the energy lipids wax ester (WE) and methyl ester (ME), suggesting an interesting similarity with pelagic larvae of other invertebrates and fish where those lipid classes have also been recorded. Despite differences in hatchling size, the small H. scobina had significantly higher amounts of the energy storage lipid TG compared with C. maculosa and C. virgata, suggesting interesting trade-offs between offspring size and offspring energy resources. H. scobina was the only species that suffered a complete depletion of FFA during development (5th wk), suggesting an additional role of this energetic lipid during the early stages of development. Differences in the amount of lipids among newly laid capsules and siblings within capsules were also detected within species. In both species with multiple embryos per capsule, C. maculosa and H. scobina, these differences were largely explained by variation in TG and PL, enhancing the important role of the major structural (PL) and energy (TG) lipids during the early stages of these whelks, and also providing an integrative approach for evaluating maternally-derived lipids on a perindividual basis in direct developing species with contrasting provisioning and offspring size. Because in direct developers maternal provisioning to the embryos is the primary source of nutrition until offspring enter juvenile life, differences in performance should be closely related with initial provisioning, which in turn may reflect maternal nutritional conditions. Field-based surveys and manipulative experiments in the laboratory showed that different maternal environments (i.e. locations and sites) and contrasting offspring size influenced juvenile performance in different ways for C. virgata and C. maculosa. Despite the large differences in conditions and available resources between the Wellington Harbour and the nearby South Coast, the two locations did not influence the hatchling size of either species, and the most important source of variation was at the smallest scale (i.e. among sites), with substantial variation also occurring within and among females. Between and within species differences in hatching size reflected juvenile performance when fed, regardless of whether subjected to desiccation stress. When starved however, species-specific and size differences in performance were less significant. As has been described for many taxa, large offspring often perform better than small conspecifics; however, because this performance is likely to be context-dependent, understanding the importance of the different scales of variation is crucial for determining how variation in size reflects an organism’s performance. Despite the long recognized role of intra-specific variation in offspring size in mediating subsequent performance, the consequences of inter-specific variation in peroffspring maternal investment for co-occurring taxa have been rarely examined in a predator-prey context. Manipulative experiments in the laboratory with hatchling and juvenile C. virgata and C. maculosa revealed that vulnerability of their early life-stages to common crab predators (i.e. the shore crab Cyclograpsus lavauxi) is highly size-dependent. When predator size was evaluated, small crabs were unable to eat hatchlings of either whelk species. Medium and large shore crabs consumed both prey species; however, hatchlings of C. virgata were less vulnerable to predation by medium crabs than large ones, and C. maculosa were equally vulnerable to both sizes of crabs. In hatchlings of both prey species the shell length and shell thickness increased over time; however, only C. virgata reached a size refuge from predation after two months posthatch. Results showed that vulnerability to predators can be mitigated by larger sizes and thicker shells at hatch; nonetheless, other species-specific traits such as juvenile growth rates, may also play key roles in determining the vulnerability of hatchling and juvenile snails when exposed to shell-crushing predators. Overall, these findings suggest that when defining offspring size, provisioning and performance relationships, many context-dependent scenarios are likely to arise. Therefore examining the early life-history stages of direct developing whelks with contrasting maternal investment under an integrative morphological, physiological and experimental approach, allowed a better understanding of how these complex relationships arises and how mediated the species life-history in terms of offspring size, maternal provisioning and subsequent juvenile performance.</p>


2021 ◽  
Author(s):  
◽  
Sergio Antonio Carrasco Órdenes

<p>Initial maternal provisioning has pervasive ecological and evolutionary implications for species with direct development, influencing offspring size and energetic content, with subsequent effects on performance, and consequences in fitness for both offspring and mother. Here, using three sympatric marine intertidal direct developing gastropods as model organisms (Cominella virgata, Cominella maculosa and Haustrum scobina) I examined how contrasting strategies of maternal investment influenced development, hatchling size, maternal provisioning and juvenile performance. In these sympatric whelks, duration of intra-capsular development was similar among species (i.e. 10 wk until hatching); nonetheless, differences in provisioning and allocation were observed. Cominella virgata (1 embryo per capsule; ~3 mm shell length [SL]) and C. maculosa (7.7 ± 0.3 embryos per capsule; ~1.5 mm SL) provided their embryos with a jelly-like albumen matrix and all embryos developed. Haustrum scobina encapsulated on average 235 ± 17 embryos per capsule but only ~10 reached the hatching stage (~1.2 mm SL), with the remaining siblings being consumed as nurse embryos, mainly during the first 4 wk of development. Similar chronology in the developmental stages was recognizable among species. Higher growth rates and evident juvenile structures became clear by the second half of development and larval characteristics were less frequently observed. Even after 10 weeks of encapsulation and despite emergent crawling juveniles, some hatchling H. scobina still retained “larval” traits, suggesting that this nurse embryo-based provisioning could result in intracapsular asynchrony of development, and that female of this species would be able to bet-hedge in a higher extent compared with female C. maculosa or C. virgata. Maternal investment in newly laid egg capsules differed among the three study species. The structural lipids phospholipid (PL) and cholesterol (ST) and the energetic lipids aliphatic hydrocarbon (AH), triglycerides (TG), diglycerides (DG) and free fatty acids (FFA) occurred in all three species. Only eggs (and also hatchlings) of the multiencapsulated embryos C. maculosa and H. scobina were provisioned with the energy lipids wax ester (WE) and methyl ester (ME), suggesting an interesting similarity with pelagic larvae of other invertebrates and fish where those lipid classes have also been recorded. Despite differences in hatchling size, the small H. scobina had significantly higher amounts of the energy storage lipid TG compared with C. maculosa and C. virgata, suggesting interesting trade-offs between offspring size and offspring energy resources. H. scobina was the only species that suffered a complete depletion of FFA during development (5th wk), suggesting an additional role of this energetic lipid during the early stages of development. Differences in the amount of lipids among newly laid capsules and siblings within capsules were also detected within species. In both species with multiple embryos per capsule, C. maculosa and H. scobina, these differences were largely explained by variation in TG and PL, enhancing the important role of the major structural (PL) and energy (TG) lipids during the early stages of these whelks, and also providing an integrative approach for evaluating maternally-derived lipids on a perindividual basis in direct developing species with contrasting provisioning and offspring size. Because in direct developers maternal provisioning to the embryos is the primary source of nutrition until offspring enter juvenile life, differences in performance should be closely related with initial provisioning, which in turn may reflect maternal nutritional conditions. Field-based surveys and manipulative experiments in the laboratory showed that different maternal environments (i.e. locations and sites) and contrasting offspring size influenced juvenile performance in different ways for C. virgata and C. maculosa. Despite the large differences in conditions and available resources between the Wellington Harbour and the nearby South Coast, the two locations did not influence the hatchling size of either species, and the most important source of variation was at the smallest scale (i.e. among sites), with substantial variation also occurring within and among females. Between and within species differences in hatching size reflected juvenile performance when fed, regardless of whether subjected to desiccation stress. When starved however, species-specific and size differences in performance were less significant. As has been described for many taxa, large offspring often perform better than small conspecifics; however, because this performance is likely to be context-dependent, understanding the importance of the different scales of variation is crucial for determining how variation in size reflects an organism’s performance. Despite the long recognized role of intra-specific variation in offspring size in mediating subsequent performance, the consequences of inter-specific variation in peroffspring maternal investment for co-occurring taxa have been rarely examined in a predator-prey context. Manipulative experiments in the laboratory with hatchling and juvenile C. virgata and C. maculosa revealed that vulnerability of their early life-stages to common crab predators (i.e. the shore crab Cyclograpsus lavauxi) is highly size-dependent. When predator size was evaluated, small crabs were unable to eat hatchlings of either whelk species. Medium and large shore crabs consumed both prey species; however, hatchlings of C. virgata were less vulnerable to predation by medium crabs than large ones, and C. maculosa were equally vulnerable to both sizes of crabs. In hatchlings of both prey species the shell length and shell thickness increased over time; however, only C. virgata reached a size refuge from predation after two months posthatch. Results showed that vulnerability to predators can be mitigated by larger sizes and thicker shells at hatch; nonetheless, other species-specific traits such as juvenile growth rates, may also play key roles in determining the vulnerability of hatchling and juvenile snails when exposed to shell-crushing predators. Overall, these findings suggest that when defining offspring size, provisioning and performance relationships, many context-dependent scenarios are likely to arise. Therefore examining the early life-history stages of direct developing whelks with contrasting maternal investment under an integrative morphological, physiological and experimental approach, allowed a better understanding of how these complex relationships arises and how mediated the species life-history in terms of offspring size, maternal provisioning and subsequent juvenile performance.</p>


2021 ◽  
Author(s):  
◽  
John Van der Sman

<p>Parental investment per offspring is a key life history trait in which offspring size and number combinations are balanced in order to maximise fitness. When food is scarce and energy for reproduction is reduced, changes in reproductive allocation can be expected. These adjustments may go on to influence the growth and survival of the next generation. Trade-offs in reproductive allocation in response to food availability occurred differently in each of the three whelks species of this study. However, each species traded numbers of offspring rather than size of offspring when fed low food. Offspring size was more variable among and within capsules than among food treatments. Capsule size was a plastic trait that varied in response to food treatments in each of the species and varied among populations of the same species. Carry-over effects of maternal nutrition influenced juvenile growth in all three species. However, while juvenile growth was greater when adults were fed high food in two of the species, high adult food suppressed the growth of juveniles of the third species. This may be a mechanism to prevent potential negative consequences of rapid growth. There was no evidence of a maternal effect of mortality in any of the three species. Greater variation in hatchling size occurred in the species in which nurse egg feeding occurred. Nurse egg feeding may be a successful strategy in unpredictable environments where optimal offspring size changes from year to year. Regional differences in reproductive allocation between whelks separated by small distances suggest that populations may be isolated from one another and may need to be managed separately for conservation purposes. This study highlights the influence of maternal nutritional effects on life history and the potential impacts that these may have on population and community structure.</p>


2021 ◽  
Author(s):  
◽  
John Van der Sman

<p>Parental investment per offspring is a key life history trait in which offspring size and number combinations are balanced in order to maximise fitness. When food is scarce and energy for reproduction is reduced, changes in reproductive allocation can be expected. These adjustments may go on to influence the growth and survival of the next generation. Trade-offs in reproductive allocation in response to food availability occurred differently in each of the three whelks species of this study. However, each species traded numbers of offspring rather than size of offspring when fed low food. Offspring size was more variable among and within capsules than among food treatments. Capsule size was a plastic trait that varied in response to food treatments in each of the species and varied among populations of the same species. Carry-over effects of maternal nutrition influenced juvenile growth in all three species. However, while juvenile growth was greater when adults were fed high food in two of the species, high adult food suppressed the growth of juveniles of the third species. This may be a mechanism to prevent potential negative consequences of rapid growth. There was no evidence of a maternal effect of mortality in any of the three species. Greater variation in hatchling size occurred in the species in which nurse egg feeding occurred. Nurse egg feeding may be a successful strategy in unpredictable environments where optimal offspring size changes from year to year. Regional differences in reproductive allocation between whelks separated by small distances suggest that populations may be isolated from one another and may need to be managed separately for conservation purposes. This study highlights the influence of maternal nutritional effects on life history and the potential impacts that these may have on population and community structure.</p>


Author(s):  
Karina Vanadzina ◽  
André Phillips ◽  
Bonnie Martins ◽  
Kevin N. Laland ◽  
Michael M. Webster ◽  
...  

2021 ◽  
pp. 115-128
Author(s):  
Jeffrey A. Hutchings

Offspring number and size are two of the most variable life-history traits. Among species, much of this variability can be attributed to genetic, developmental, physiological, or structural constraints. Some trait combinations are not possible because of differences associated with a species’ evolutionary history. Substantial variation in propagule number and size can exist among populations of the same species, generating questions concerning the adaptive significance of this variability. The most influential models are those attributed to Lack on clutch size and to Smith and Fretwell on offspring size. Fundamental to both sets of models is a trade-off between offspring number and parental investment per offspring. When offspring survival or fitness continuously varies with offspring size, the fitness of the parent depends on both offspring size and the number of offspring of that size that the parent can produce. If offspring survival is independent of offspring size, parental fitness is maximized when individuals maximize the production of minimally sized propagules.


2021 ◽  
Author(s):  
Hilary Cope ◽  
Edward Ivimey-Cook ◽  
Jacob Moorad

AbstractParental age at reproduction influences offspring size and survival by affecting prenatal and postnatal conditions in a wide variety of species, including humans. However, most investigations into this manifestation of ageing focus upon maternal age effects; the effects of paternal age and interactions between maternal and paternal age are often neglected. Furthermore, even when maternal age effects are studied, pre- and postnatal effects are confounded. Using a cross-fostered experimental design, we investigated the joint effects of paternal and pre- and postnatal maternal ages on numerous offspring outcomes in a laboratory population of a species of burying beetle, Nicrophorus vespilloides. When we correct our tests for significance for multiple comparisons, we found no clear evidence for any parental effect senescence acting on egg size, larval weight, or larval survival. Nor did we find a statistical effect of paternal or egg producer age on the outcomes of foster mothers as measured by weight change experienced during caregiving. These findings are consistent with recent negative results reported in a similar study of N. vespilloides maternal age effects while also expanding these to other offspring traits and to paternal age effects. We discuss how the peculiar life history of this species may promote selection to resist the evolution of parental age effects, and how this might have influenced our ability to detect senescence.


Sign in / Sign up

Export Citation Format

Share Document