scholarly journals Restricted X chromosome introgression and support for Haldane's rule in hybridizing damselflies

2021 ◽  
Author(s):  
Janne Swaegers ◽  
Rosa Ana Sanchez-Guillen ◽  
Pallavi Chauhan ◽  
Maren Wellenreuther ◽  
Bengt Hansson

Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and allow to shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridisation. Moreover, they are thought to contribute to Haldane's rule which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes and (ii) that males are underrepresented among admixed individuals as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data adds to the few studies on species with X0 sex determination system and contradicts the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.

The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 578-585 ◽  
Author(s):  
Catherine E. Smith ◽  
Sievert Rohwer

Abstract We introduce a phenotypic method to test for excess mortality in hybrids of the heterogametic sex, as expected from Haldane's rule, and apply this method to the unusually narrow hybrid zones between Hermit Warblers (Dendroica occidentalis) and Townsend's Warblers (D. townsendi) in the Pacific Northwest. Our test requires establishing comparable hybrid indices for male and female warblers. The hybrid index that we developed for females produced age-corrected distributions for phenotypically pure reference samples that closely matched those used by Rohwer and Wood (1998) for males. The similarity in these distributions enabled us to compare the relative frequency of males and females in hybrids and parentals. We detected no deficiency of hybrid females and thus no inviability in the heterogametic sex. Our failure to find evidence of the inviability component of Haldane's rule is not unexpected given the close relationship between these taxa; nonetheless, our methods should be generally useful for studies of hybrid zones.


Genetics ◽  
1972 ◽  
Vol 72 (2) ◽  
pp. 317-333
Author(s):  
Martin L Tracey

ABSTRACT Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X.YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1799-1815 ◽  
Author(s):  
Michael Turelli ◽  
David J Begun

Abstract The “dominance theory” of Haldane's rule postulates that hybrids of the heterogametic sex are more likely to be inviable or sterile than the homogametic sex because some of the epistatic incompatibilities contributing to postzygotic isolation behave as X-linked partial recessives. When this is true, pairs of taxa with relatively large X chromosomes should require less divergence time, on average, to produce Haldane's rule than pairs with smaller Xs. Similarly, if the dominance theory is correct and if the X chromosome evolves at a similar rate to the autosomes, the size of the X should not influence the rate at which homogametic hybrids become inviable or sterile. We use Drosophila data to examine both of these predictions. As expected under the dominance theory, pairs of taxa with large X chromosomes (~40% of the nuclear genome) show Haldane's rule for sterility at significantly smaller genetic distances than pairs with smaller X chromosomes (~20% of the genome). As also predicted, the genetic distances between taxa that exhibit female inviability/sterility show no differences between “large X” vs. “small X” pairs. We present some simple mathematical models to relate these data to the dominance theory and alternative hypotheses involving faster evolution of the X vs. the autosomes and/or faster evolution of incompatibilities that produce male-specific vs. female-specific sterility. Although the data agree qualitatively with the predictions of the dominance theory, they depart significantly from the quantitative predictions of simple models of the dominance theory and the other hypotheses considered. These departures probably stem from the many simplifying assumptions needed to tractably model epistatic incompatibilities and to analyze heterogeneous data from many taxa.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


2018 ◽  
Vol 23 (11) ◽  
pp. 2122 ◽  
Author(s):  
Nadim Yılmazer

Hyalomma scupense, H. excavatum and H. marginatum are globally important tick species, as well as in Turkey, both in terms of human and animal health. The genome sizes of these tick species were determined in this study for the first time. From flow cytometric measurements, diploid genome sizes of female and male H. scupense were found to be 2.13 pg and 1.75 pg, respectively, while H. excavatum were 2.21 pg and 1.94 pg, and H. marginatum were 2.48 pg and 1.98 pg, respectively. Differences in diploid genome size indicate X chromosome size of females and males in these ticks because they have an XX:XO sex determination system. Thus, it was estimated that the X chromosome of H. scupense, H. excavatum, and H. marginatum may be composed of as much as 0.38 pg, 0.27 pg, and 0.50 pg of DNA, respectively. These findings indicate suitability of these three species for genome sequencing due to the relatively small size of their genomes compared with other tick species.


2021 ◽  
Vol 376 (1832) ◽  
pp. 20200089
Author(s):  
Heiner Kuhl ◽  
Yann Guiguen ◽  
Christin Höhne ◽  
Eva Kreuz ◽  
Kang Du ◽  
...  

Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet ( Acipenser ruthenus ). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages ( A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso ), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species ( A. gueldenstaedtii, A. baerii ). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1020 ◽  
Author(s):  
Rovatsos ◽  
Altmanová ◽  
Augstenová ◽  
Mazzoleni ◽  
Velenský ◽  
...  

Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and molecular (comparative genomic hybridization, in situ hybridization with rDNA, microsatellite, and telomeric sequences) cytogenetic approaches. In contrast to most sauropsid lineages, the chameleons of the genus Furcifer show chromosomal variability even among closely related species, with diploid chromosome numbers varying from 2n = 22 to 2n = 28. We identified female heterogamety with cytogenetically distinct Z and W sex chromosomes in all studied species. Notably, multiple neo-sex chromosomes in the form Z1Z1Z2Z2/Z1Z2W were uncovered in four species of the genus (F. bifidus, F. verrucosus, F. willsii, and previously studied F. pardalis). Phylogenetic distribution and morphology of sex chromosomes suggest that multiple sex chromosomes, which are generally very rare among vertebrates with female heterogamety, possibly evolved several times within the genus Furcifer. Although acrodontan lizards (chameleons and dragon lizards) demonstrate otherwise notable variability in sex determination, it seems that female heterogamety with differentiated sex chromosomes remained stable in the chameleons of the genus Furcifer for about 30 million years.


1982 ◽  
Vol 24 (6) ◽  
pp. 661-665 ◽  
Author(s):  
J. A. Seawright ◽  
M. Q. Benedict ◽  
S. Narang ◽  
P. E. Kaiser

Two new mutants, white eye (we) and curled (cr), of Anopheles albimanus Wiedemann were isolated and studied. Both mutants are recessive and are approximately 18.9 ± 1.9 units apart on the X chromosome. White eye is fully viable, but cr is a recessive lethal. The mode of inheritance of these two mutants provides further evidence of an X-Y sex determination system in An. albimanus and a lack of homology between the X and Y chromosomes.


Sign in / Sign up

Export Citation Format

Share Document