Construction of an RFLP map in sorghum and comparative mapping in maize

Genome ◽  
1994 ◽  
Vol 37 (2) ◽  
pp. 236-243 ◽  
Author(s):  
M.G. Pereira ◽  
M. Lee ◽  
P. Bramel-Cox ◽  
W. Woodman ◽  
J. Doebley ◽  
...  

An F2 population derived from a cross between Sorghum bicolor ssp. bicolor ('CK60') and Sorghum bicolor ssp. drummondii ('PI229828') was used to develop an RFLP genetic linkage map of sorghum. The map consists of 201 loci distributed among 10 linkage groups covering a map distance of 1530 cM, with an average 8 cM between adjacent loci. Maize genomic probes (52), maize cDNA probes (124), and sorghum genomic probes (10) were used to define the loci (55, 136, and 10, respectively). Ninety-five percent of the loci fit expected segregation ratios. The loci with distorted segregation ratios were confined almost exclusively to a region of one linkage group. Comparison of sorghum and maize maps indicated high correspondence between the two genomes in terms of loci order and genetic distance. Many loci linked in maize (45 of 55) were also linked in sorghum. Instances of both conserved and rearranged locus orders were detected. Key words: genetics, gene mapping, Sorghum bicolor, Zea mays.

Genome ◽  
2011 ◽  
Vol 54 (2) ◽  
pp. 128-143 ◽  
Author(s):  
Bum-Yong Kang ◽  
John E. Major ◽  
Om P. Rajora

Genetic maps provide an important genomic resource of basic and applied significance. Spruce ( Picea ) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5–24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL–MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 657-661 ◽  
Author(s):  
Y Yao ◽  
M Ban ◽  
J Brandle

To lay a foundation for molecular breeding efforts, the first genetic linkage map for Stevia rebaudiana has been constructed using segregation data from a pseudo test-cross F1 population. A total of 183 randomly amplified polymorphic DNA (RAPD) markers were analysed and assembled into 21 linkage groups covering a total distance of 1389 cM, with an average distance between markers of of 7.6 cM. The 11 largest linkage groups consisted of 4-19 loci, ranged in length from 56 to 174 cM, and accounted for 75% of the total map distance. Fifteen RAPD loci were found to be unlinked. From the 521 primers showing amplification products, 185 (35.5%) produced a total of 293 polymorphic fragments, indicating a high level of genetic diversity in stevia. Most of the RAPD markers in stevia segregated in normal Mendelian fashion.Key words: stevia, open-pollinated, genome map, RAPD.


Genome ◽  
2012 ◽  
Vol 55 (4) ◽  
pp. 327-335 ◽  
Author(s):  
Xiaoxia Yu ◽  
Xiaolei Li ◽  
Yanhong Ma ◽  
Zhuo Yu ◽  
Zaozhe Li

Using a population of 105 interspecific F2 hybrids derived from a cross between Agropyron mongolicum Keng and Agropyron cristatum (L.) Gaertn. ‘Fairway’ as a mapping population, a genetic linkage map of crested wheatgrass was constructed based on AFLP and RAPD molecular markers. A total of 175 markers, including 152 AFLP and 23 RAPD markers, were ordered in seven linkage groups. The map distance was 416 cM, with a mean distance of 2.47 cM between markers. The number of markers ranged from 13 to 46 in each linkage group and the length of groups ranged from 18 to 104 cM. The research found that 30 out of 175 molecular markers showed segregation distortion, accounting for 17% of all markers. This is the first genetic linkage map of crested wheatgrass. This map will facilitate gene localization, cloning, and molecular marker-assisted selection in the future.


Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 304-315 ◽  
Author(s):  
R A Woram ◽  
C McGowan ◽  
J A Stout ◽  
K Gharbi ◽  
M M Ferguson ◽  
...  

We constructed a genetic linkage map for Arctic char (Salvelinus alpinus) using two backcrosses between genetically divergent strains. Forty-six linkage groups (expected = 39–41) and 19 homeologous affinities (expected = 25) were identified using 184 microsatellites, 129 amplified fragment length polymorphisms (AFLPs), 13 type I gene markers, and one phenotypic marker, SEX. Twenty-six markers remain unlinked. Female map distance (9.92 Morgans) was substantially higher than male map distance (3.90 Morgans) based on the most complete parental information (i.e., the F1 hybrids). Female recombination rates were often significantly higher than those of males across all pairwise comparisons within homologous chromosomal segments (average female to male ratios within families was 1.69:1). The female hybrid parent had significantly higher recombination rates than the pure strain female parent. Segregation distortion was detected in four linkage groups (4, 8, 13, 20) for both families. In family 3, only the largest fish were sampled for genotyping, suggesting that segregation distortion may represent regions possessing influences on growth. In family 2, almost all cases showing segregation distortion involved markers in the female hybrid parent.Key words: salmonid fishes, polyploidy, homeology, genetic markers.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 727d-727
Author(s):  
Liang L. Hong ◽  
Paul G. Thompson

Random amplified polymorphic DNA (RAPD) markers were analyzed in parents and progeny of four sweetpotato crosses. An average of 69 primers were tested and 23.5% produced well resolved polymorphic banding patterns. Each polymorphic primer had an average of 1.9 polymorphic bands resulting in 0.45 polymorphic fragments per primer tested. Phenotypic segregation ratios of 88% of polymorphic fragments fit those expected for hexaploid Mendelian inheritance. Numbers of linked polymorphic fragments and numbers of linkage groups were 13 and 5 for Cross A, 0 and 0 for Cross B, 23 and 3 for Cross C and 16 and 6 for Cross D. Those results indicated that RAPD markers have potential for a genetic linkage map in sweetpotato; however, many primers must be screened.


2000 ◽  
Vol 51 (4) ◽  
pp. 415 ◽  
Author(s):  
C. J. Lambrides ◽  
R. J. Lawn ◽  
I. D. Godwin ◽  
J. Manners ◽  
B. C. Imrie

Two genetic linkage maps of mungbean derived from the cross Berken ACC 41 are reported. The F2 map constructed from 67 individuals consisted of 110 markers (52 RFLP and 56 RAPD) that grouped into 12 linkage groups. The linked markers spanned a total map distance of 758.3 cM. A recombinant inbred (RI) population derived from the 67 F2 individuals was used for the generation of an additional linkage map. The RI map, composed entirely of RAPD markers, consisted of 115 markers in 12 linkage groups. The linked markers spanned a total map distance of 691.7 cM. Using a framework set of RFLP markers, the F2 map was compared with another F2 mungbean map constructed in Minnesota. In general, the order of these markers was consistent between maps. Segregation distortion was observed for some markers. 14.5% (16/110) of mapped F2 markers and 24% (28/115) of mapped RI markers segregated with distorted ratios. Segregation distortion occurred in each successive generation after the F2 . The regions of distortion identified in the Australian maps did not coincide with regions of the Minnesota map.


2000 ◽  
Vol 66 (12) ◽  
pp. 5290-5300 ◽  
Author(s):  
Luis M. Larraya ◽  
G�mer P�rez ◽  
Enrique Ritter ◽  
Antonio G. Pisabarro ◽  
Lucı́a Ramı́rez

ABSTRACT We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes ofP. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.


2015 ◽  
Vol 154 (7) ◽  
pp. 1209-1217 ◽  
Author(s):  
A. BOONCHANAWIWAT ◽  
S. SRAPHET ◽  
S. WHANKAEW ◽  
O. BOONSENG ◽  
D. R. SMITH ◽  
...  

SUMMARYCassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus Colletotrichum gloeosporioides f. sp. manihotis. The pathogen causes severe stem damage resulting in yield reductions and lack of stem cuttings available for planting. Molecular studies of cassava response to CAD will provide useful information for cassava breeders to develop new varieties with resistance to the disease. The current study aimed to identify quantitative trait loci (QTL) and DNA markers associated with resistance to CAD. A total of 200 lines of two F1 mapping populations were generated by reciprocal crosses between the varieties Huabong60 and Hanatee. The F1 samples were genotyped based on simple sequence repeat (SSR) and expressed sequence tag-SSR markers and a genetic linkage map was constructed using the JoinMap®/version3·0 program. The results showed that the map consisted of 512 marker loci distributed on 24 linkage groups with a map length of 1771·9 centimorgan (cM) and a mean interval between markers of 5·7 cM. The genetic linkage map was integrated with phenotypic data for the response to CAD infection generated by a detached leaf assay test. A total of three QTL underlying the trait were identified on three linkage groups using the MapQTL®/version4·0 program. Those DNA markers linked to the QTL that showed high statistically significant values with the CAD resistance trait were identified for gene annotation analysis and 23 candidate resistance genes to CAD infection were identified.


Genome ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 367-376 ◽  
Author(s):  
P.D. Olivera ◽  
A. Kilian ◽  
P. Wenzl ◽  
B.J. Steffenson

Aegilops sharonensis (Sharon goatgrass), a diploid wheat relative, is known to be a rich source of disease resistance genes for wheat improvement. To facilitate the transfer of these genes into wheat, information on their chromosomal location is important. A genetic linkage map of Ae. sharonensis was constructed based on 179 F2 plants derived from a cross between accessions resistant (1644) and susceptible (1193) to wheat leaf rust. The linkage map was based on 389 markers (377 Diversity Arrays Technology (DArT) and 12 simple sequence repeat (SSR) loci) and was comprised of 10 linkage groups, ranging from 2.3 to 124.6 cM. The total genetic length of the map was 818.0 cM, with an average interval distance between markers of 3.63 cM. Based on the chromosomal location of 115 markers previously mapped in wheat, the four linkage groups of A, B, C, and E were assigned to Ae. sharonensis (Ssh) and homoeologous wheat chromosomes 6, 1, 3, and 2. The single dominant gene (designated LrAeSh1644) conferring resistance to leaf rust race THBJ in accession 1644 was positioned on linkage group A (chromosome 6Ssh) and was flanked by DArT markers wpt-9881 (at 1.9 cM distal from the gene) and wpt-6925 (4.5 cM proximal). This study clearly demonstrates the utility of DArT for genotyping uncharacterized species and tagging resistance genes where pertinent genomic information is lacking.


Genome ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 360-369 ◽  
Author(s):  
Wengang Xie ◽  
Joseph G. Robins ◽  
B. Shaun Bushman

Orchardgrass ( Dactylis glomerata L.), or cocksfoot, is indigenous to Eurasia and northern Africa, but has been naturalized on nearly every continent and is one of the top perennial forage grasses grown worldwide. To improve the understanding of genetic architecture of orchardgrass and provide a template for heading date candidate gene search in this species, the goals of the present study were to construct a tetraploid orchardgrass genetic linkage map and identify quantitative trait loci associated with heading date. A combination of SSR markers derived from an orchardgrass EST library and AFLP markers were used to genotype an F1 population of 284 individuals derived from a very late heading Dactylis glomerata subsp. himalayensis parent and an early to mid-heading Dactylis glomerata subsp. aschersoniana parent. Two parental maps were constructed with 28 cosegregation groups and seven consensus linkage groups each, and homologous linkage groups were tied together by 38 bridging markers. Linkage group lengths varied from 98 to 187 cM, with an average distance between markers of 5.5 cM. All but two mapped SSR markers had homologies to physically mapped rice (Oryza sativa L.) genes, and six of the seven orchardgrass linkage groups were assigned based on this putative synteny with rice. Quantitative trait loci were detected for heading date on linkage groups 2, 5, and 6 in both parental maps, explaining between 12% and 24% of the variation.


Sign in / Sign up

Export Citation Format

Share Document