Investigating optimal aggregation interval sizes of loop detector data for freeway travel-time estimation and prediction

2009 ◽  
Vol 36 (4) ◽  
pp. 580-591 ◽  
Author(s):  
Dongjoo Park ◽  
Soyoung You ◽  
Jeonghyun Rho ◽  
Hanseon Cho ◽  
Kangdae Lee

With recent increases in the deployment of intelligent transportation system (ITS) technologies, traffic management centers have the ability to obtain and archive large amounts of data regarding the traffic system. These data can then be employed in estimations of current conditions and the prediction of future conditions on the roadway network. In this paper, we propose a general solution methodology for the identification of the optimal aggregation interval sizes of loop detector data for four scenarios (i) link travel-time estimation, (ii) corridor / route travel-time estimation, (iii) link travel-time forecasting, and (iv) corridor / route travel-time forecasting. This study applied cross validated mean square error (CVMSE) model for the link and route travel-time estimations, and a forecasting mean square error (FMSE) model for the link and corridor / route travel-time forecasting. These models were applied to loop detector data obtained from the Kyeongbu expressway in Korea. It was found that the optimal aggregation sizes for the travel-time estimation and forecasting were 3 to 5 min and 10 to 20 min, respectively.

1997 ◽  
Author(s):  
Tong Qiang Wu ◽  
Eil Kwon ◽  
Kevin Sommers ◽  
Michael Zhang ◽  
Ahsan Habib

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiming Gui ◽  
Haipeng Yu

Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for the travel time forecasting.


2003 ◽  
Vol 36 (14) ◽  
pp. 137-141 ◽  
Author(s):  
Alexandre Torday ◽  
André-Gilles Dumont

2018 ◽  
Vol 12 (7) ◽  
pp. 651-663 ◽  
Author(s):  
Lin Zhu ◽  
Fangce Guo ◽  
John W. Polak ◽  
Rajesh Krishnan

1971 ◽  
Vol 61 (6) ◽  
pp. 1639-1654 ◽  
Author(s):  
Cinna Lomnitz

abstract Travel times from earthquakes or explosions contain both positive and negative systematic errors. Positive skews in travel-time residuals due to epicenter mislocation, and negative skews due to lateral inhomogeneity in the Earth, are analyzed. Methods for travel-time estimation are critically reviewed. Recent travel-time tables, including the J-B tables, are within the range of root-mean-square travel-time fluctuations; the J-B tables are systematically late but cannot be reliably improved by least-square methods. Effects of lateral inhomogeneity at teleseismic distances can be estimated by chronoidal methods independently of standard tables, but the available explosion data are insufficiently well-distributed in azimuth and distance for this purpose.


Sign in / Sign up

Export Citation Format

Share Document