Mechanisms for activation and inhibition of carboxypeptidase A catalyzed hydrolyses of peptides and esters

1978 ◽  
Vol 56 (5) ◽  
pp. 329-333 ◽  
Author(s):  
John F. Sebastian ◽  
Whe-Yong Lo

3,3-Diphenylpropanoate (DPP) activates the carboxypeptidase A catalyzed hydrolysis of benzoylglycyl-L-phenylalanine (BzGly-L-Phe) (Ka = 2.1 × 10−3 M) and inhibits ester hydrolysis uncompetitively (Ki = 2.1 × 10−3 M). A common modifier binding site located adjacent to the peptide and ester substrate binding sites is proposed. The forms of the pathways proposed for activation and inhibition are remarkably similar.

2018 ◽  
Vol 200 (12) ◽  
Author(s):  
Johanna Heuveling ◽  
Heidi Landmesser ◽  
Erwin Schneider

ABSTRACT ATP-binding cassette (ABC) transport systems comprise two transmembrane domains/subunits that form a translocation path and two nucleotide-binding domains/subunits that bind and hydrolyze ATP. Prokaryotic canonical ABC import systems require an extracellular substrate-binding protein for function. Knowledge of substrate-binding sites within the transmembrane subunits is scarce. Recent crystal structures of the ABC importer Art(QN) 2 for positively charged amino acids of Thermoanerobacter tengcongensis revealed the presence of one substrate molecule in a defined binding pocket in each of the transmembrane subunits, ArtQ (J. Yu, J. Ge, J. Heuveling, E. Schneider, and M. Yang, Proc Natl Acad Sci U S A 112:5243–5248, 2015, https://doi.org/10.1073/pnas.1415037112 ). This finding raised the question of whether both sites must be loaded with substrate prior to initiation of the transport cycle. To address this matter, we first explored the role of key residues that form the binding pocket in the closely related Art(MP) 2 transporter of Geobacillus stearothermophilus , by monitoring consequences of mutations in ArtM on ATPase and transport activity at the level of purified proteins embedded in liposomes. Our results emphasize that two negatively charged residues (E153 and D160) are crucial for wild-type function. Furthermore, the variant Art[M(L67D)P] 2 exhibited strongly impaired activities, which is why it was considered for construction of a hybrid complex containing one intact and one impaired substrate-binding site. Activity assays clearly revealed that one intact binding site was sufficient for function. To our knowledge, our study provides the first biochemical evidence on transmembrane substrate-binding sites of an ABC importer. IMPORTANCE Canonical prokaryotic ATP-binding cassette importers mediate the uptake of a large variety of chemicals, including nutrients, osmoprotectants, growth factors, and trace elements. Some also play a role in bacterial pathogenesis, which is why full understanding of their mode of action is of the utmost importance. One of the unsolved problems refers to the chemical nature and number of substrate binding sites formed by the transmembrane subunits. Here, we report that a hybrid amino acid transporter of G. stearothermophilus , encompassing one intact and one impaired transmembrane binding site, is fully competent in transport, suggesting that the binding of one substrate molecule is sufficient to trigger the translocation process.


1982 ◽  
Vol 207 (1) ◽  
pp. 51-56 ◽  
Author(s):  
C E Phillipson ◽  
C Ioannides ◽  
M Delaforge ◽  
D V Parke

The interaction of substrates of the microsomal mixed-function oxidases with cytochromes P-450 and P-448 was investigated by using liver microsomes from rats pretreated with phenobarbital or 3-methylcholanthrene, and with purified forms of the cytochromes isolated from rabbit liver. The two forms of the cytochrome have different substrate specificities; cytochrome P-450 has one type 1 substrate-binding site that can accommodate a large variety of substrates, but in contrast cytochrome P-448 may possess two type 1 substrate-binding sites, one of which is different to that of cytochrome P-450 in that it shows a specificity for substrates such as safrole and 9-hydroxy-ellipticine. These findings explain why the two forms of the cytochrome have different substrate specificities and play contrasting roles in the activation and deactivation of xenobiotics.


Author(s):  
R. P. Singh ◽  
A. Singh ◽  
G. S Kushwaha ◽  
A. K. Singh ◽  
P. Kaur ◽  
...  

The mammalian haem peroxidase superfamily consists of myeloperoxidase (MPO), lactoperoxidase (LPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). These enzymes catalyze a number of oxidative reactions of inorganic substrates such as Cl−, Br−, I−and SCN−as well as of various organic aromatic compounds. To date, only structures of MPO and LPO are known. The substrate-binding sites in these enzymes are located on the distal haem side. Propylthiouracil (PTU) is a potent antithyroid drug that acts by inhibiting the function of TPO. It has also been shown to inhibit the action of LPO. However, its mode of binding to mammalian haem peroxidases is not yet known. In order to determine the mode of its binding to peroxidases, the structure of the complex of LPO with PTU has been determined. It showed that PTU binds to LPO in the substrate-binding site on the distal haem side. The IC50values for the inhibition of LPO and TPO by PTU are 47 and 30 µM, respectively. A comparision of the residues surrounding the substrate-binding site on the distal haem side in LPO with those in TPO showed that all of the residues were identical except for Ala114 (LPO numbering scheme), which is replaced by Thr205 (TPO numbering scheme) in TPO. A threonine residue in place of alanine in the substrate-binding site may affect the affinity of PTU for peroxidases.


1991 ◽  
Vol 12 ◽  
pp. 422-426 ◽  
Author(s):  
Ferdinand Hucko ◽  
Jaak Järv ◽  
Christoph Weise

2005 ◽  
Vol 288 (2) ◽  
pp. F327-F333 ◽  
Author(s):  
Rémon A. M. H. Van Aubel ◽  
Pascal H. E. Smeets ◽  
Jeroen J. M. W. van den Heuvel ◽  
Frans G. M. Russel

The end product of human purine metabolism is urate, which is produced primarily in the liver and excreted by the kidney through a well-defined basolateral blood-to-cell uptake step. However, the apical cell-to-urine efflux mechanism is as yet unidentified. Here, we show that the renal apical organic anion efflux transporter human multidrug resistance protein 4 (MRP4), but not apical MRP2, mediates ATP-dependent urate transport via a positive cooperative mechanism ( Km of 1.5 ± 0.3 mM, Vmax of 47 ± 7 pmol·mg−1·min−1, and Hill coefficient of 1.7 ± 0.2). In HEK293 cells overexpressing MRP4, intracellular urate levels were lower than in control cells. Urate inhibited methotrexate transport (IC50 of 235 ± 8 μM) by MRP4, did not affect cAMP transport, whereas cGMP transport was stimulated. Urate shifted cGMP transport by MRP4 from positive cooperativity ( Km and Vmax value of 180 ± 20 μM and 58 ± 4 pmol·mg−1·min−1, respectively, Hill coefficient of 1.4 ± 0.1) to single binding site kinetics ( Km and Vmax value of 2.2 ± 0.9 mM and 280 ± 50 pmol·mg−1·min−1, respectively). Finally, MRP4 could transport urate simultaneously with cAMP or cGMP. We conclude that human MRP4 is a unidirectional efflux pump for urate with multiple allosteric substrate binding sites. We propose MRP4 as a candidate transporter for urinary urate excretion and suggest that MRP4 may also mediate hepatic export of urate into the circulation, because of its basolateral expression in the liver.


Sign in / Sign up

Export Citation Format

Share Document