ROTATIONAL CONSTANTS AND ELECTRIC DIPOLE MOMENT OF NaF

1963 ◽  
Vol 41 (9) ◽  
pp. 1461-1469 ◽  
Author(s):  
R. K. Bauer ◽  
H. Lew

Transitions between the J = 0 and J = 1 rotational levels of Na23F19 have been measured by the molecular beam electric resonance method in the three lowest vibrational states. The following rotational constants have been determined (all frequencies in Mc/sec):[Formula: see text]The Na quadrupole interaction constants in the J = 1 level are:[Formula: see text]The spin-rotation interaction constant for Na in the J = 1 level for ν = 0, 1, and 2 is[Formula: see text]The equilibrium internuclear distance computed directly from Be is[Formula: see text]The electric dipole moment is:[Formula: see text]

1958 ◽  
Vol 36 (2) ◽  
pp. 171-183 ◽  
Author(s):  
H. Lew ◽  
D. Morris ◽  
F. E. Geiger Jr. ◽  
J. T. Eisinger

Transitions between the J = 0 and J = 1 rotational states of RbF have been measured by means of the molecular beam electric resonance method. The following rotational constants have been determined (all frequencies in Mc./sec):[Formula: see text]The quadrupole interaction constants −eqQ/h in the J = 1 state are found to be[Formula: see text]The equilibrium internuclear distance is re = (2.26554 ± 0.00005) × 10−8 cm. The electric dipole moment of Rb85F in the ν = 0 state is μ = (8.80 ± 0.10) × 10−18 e.s.u. The mass ratio of the Rb isotopes is M85/M87 = 0.9770148 ± 0.0000052.


1960 ◽  
Vol 38 (3) ◽  
pp. 482-494 ◽  
Author(s):  
G. W. Green ◽  
H. Lew

Transitions between the J = 0 and J = 1 rotational states of K39F have been measured by means of the molecular beam electric resonance method. The following rotational constants have been determined (all frequencies in Mc/sec):[Formula: see text]The quadrupole interaction constants eqQ as measured in the J = 1 state are found to be[Formula: see text]The equilibrium internuclear distance obtained directly from Be is[Formula: see text]The electric dipole moment in the ν = 0 state is[Formula: see text]


1984 ◽  
Vol 62 (12) ◽  
pp. 1502-1507 ◽  
Author(s):  
K. I. Peterson ◽  
G. T. Fraser ◽  
W. Klemperer

Dipole moments are measured for OH (2Π) in the ν = 0, 1, and 2 vibrational states and for OD in the ν = 0 and 1 states using the molecular beam electric resonance technique. These are listed in the table below.[Formula: see text]A very accurate value of 0.00735(7) D is obtained for the difference in dipole moments between the ν = 0 and 1 vibrational states of OH. This is within 20% of the best theoretical results. The dependence on vibrational state is very nonlinear, which is also in agreement with theoretical results. Finally, the difference between the ν = 0 dipole moments of OH and OD is close to the expected value.


1972 ◽  
Vol 27 (1) ◽  
pp. 77-91 ◽  
Author(s):  
R. Ley ◽  
W. Schauer

AbstractHyperfine structure, Stark effect and Zeeman effect of the TlCl molecule have been measured with a molecular beam apparatus using electric four poles as deflecting fields and a homogeneous electric field parallel to a superimposed magnetic field in the transition region. Electric dipole transitions were induced between the hyperfine structure levels of the first rotational state J = 1 in both strong and weak external field.The following quantities could be evaluated from the spectra: the electric dipole moment µel and the magnetic rotational dipole moment µJ of the molecule, the nuclear spin-rotational interactions c1 and c2, the scalar and tensor part of the nuclear dipole-dipole interaction dS and dT, the quadrupole coupling constant e q Q of the Cl nucleus, the anisotropy of the magnetic susceptibility ξ⊥− ξ∥ , the anisotropy of the magnetic shielding of the external magnetic field at the position of both nuclei (σ⊥- σ∥)1 and (σ⊥- σ∥)2, the magnetic moment of the Cl nucleus multiplied by the scalar part of the magnetic shielding tensor µ2 · (1 - σS)2. For the most abundant isotop 205Tl35Cl the vibrational dependence of most of these quantities was measured in the vibrational states v =0, 1, 2, 3. Isotopic effects for 203Tl35Cl, 205Tl37Cl and 203Tl37Cl were investigated in the ground vibrational state. In addition the vibrational dependence of the electric dipole moment was measured for all isotopic species.It is pointed out that the usual connections between (σ⊥- σ∥)1,2 and c1,2 and between ξ⊥− ξ∥ and µJ do not hold when the excited electronic states of the molecule obey Hund’s coupling case c, which occurs most probably in TlCl.


1974 ◽  
Vol 29 (10) ◽  
pp. 1498-1500 ◽  
Author(s):  
W. Czieslik ◽  
L. Carpentier ◽  
D. H. Sutter

Abstract The microwave spectrum of Methylenecyclobutenone has been investigated in the vibrational ground state in the range of 8 to 26.5 GHz. From a least square fit of 12 lines with J ≦ 4 the rotational constants have been calculated as A =5.775664±0.000009 GHz, B = 4.312314 ± 0.000007 GHz, C = 2.467814±0.000008 GHz. The inertia defect Δ = - 0.09 amuÅ2 indicates that the molecule is planar. From Stark-effect measurements the components of the molecular electric dipole moment were obtaied as |μa| = 2.04 ± 0.02 D, |μb| = 2.70±0.03 D, |μtotal| = 3.39 ± 0.05 D.


2016 ◽  
Vol 40 ◽  
pp. 1660093 ◽  
Author(s):  
Artem Saleev ◽  
Nikolai Nikolaev ◽  
Frank Rathmann

Searches of the electric dipole moment (EDM) at a pure magnetic ring, like COSY, encounter strong background coming from magnetic dipole moment (MDM). The most troubling issue is the MDM spin rotation in the so-called imperfection, radial and longitudinal, B-fields. To study the systematic effects of the imperfection fields at COSY we proposed the original method which makes use of the two static solenoids acting as artificial imperfections. Perturbation of the spin tune caused by the spin kicks in the solenoids probes the systematic effect of cumulative spin rotation in the imperfection fields all over the ring. The spin tune is one of the most precise quantities measured presently at COSY at [Formula: see text] level. The method has been successfully tested in September 2014 run at COSY, unravelling strength of spin kicks in the ring’s imperfection fields at the level of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document