The absorption spectrum of NH2 between 6250 and 9500 Å

1976 ◽  
Vol 54 (17) ◽  
pp. 1804-1814 ◽  
Author(s):  
J. W. C. Johns ◽  
D. A. Ramsay ◽  
S. C. Ross

The earlier analysis by Dressier and Ramsay of the [Formula: see text] absorption system of NH2 has been considerably extended at the long wavelength end of the spectrum. All the low-lying vibronic levels of the excited state have been identified up to ν2′ = 8. These levels are 010(K = 0), 020(K = 1), 030(K = 0,2), 040(K = 1,3), 050(K = 0,2,4), 060(K = 1,3,5), 070(K = 0,2,4,6), and 080(K = 1,3,5,7). Large perturbations (~ 200 cm−1) have been observed between some of these levels and high vibrational levels of the ground state. Accurate molecular constants have been obtained for the ground state and for the first level involving the bending vibration (ν2″ = 1).


1961 ◽  
Vol 39 (12) ◽  
pp. 1738-1768 ◽  
Author(s):  
J. W. C. Johns

The boron flame bands have been observed in absorption during the flash photolysis of mixtures of boron trichloride and oxygen. Detailed analysis of the spectrum has shown that the bands arise from two electronic transitions in the linear symmetric molecule BO2, [Formula: see text] and A2Πu−X2Πg. The main molecular constants, in cm−1 except for r0, are summarized below:[Formula: see text]Both 2Π states show the Renner effect. In the ground state the Renner parameter, εω2, was found to be −92.2, whereas in the first excited state it is much smaller, −13.1 cm−1.



The carbon monoxide flame bands have been photographed under high resolution from an afterglow source. Bands in the wavelength range 3100 to 3800 Å show a pattern which has been reproduced by calculations of the energies of high vibrational levels of the ground state of CO 2 . The structure of this energy level pattern is strongly affected by extensive Fermi resonance in the 1 Σ + g state. The spectrum is emitted by excited CO 2 molecules which radiate to the ground state from the lowest vibrational level and from the v ´ 2 = 1 level of a B 2 state. This excited state lies approximately 46 000 cm -1 above the lowest level of the ground state, an d has an OCO angle of 122 + 2° and a CO bond length of 1*246 ± 0*008 Å. Combination of these results with the work of other authors shows that the excited state is a 1 B 2 state, and that the carbon monoxide flame bands are associated with the weak absorption system of CO 2 at 1475 Å.



1972 ◽  
Vol 50 (19) ◽  
pp. 2265-2276 ◽  
Author(s):  
J. M. Berthou ◽  
B. Pascat ◽  
H. Guenebaut ◽  
D. A. Ramsay

Rotational analyses have been carried out for the 0ν′20–000 bands of the [Formula: see text] electronic transition of PH2 with ν′2 = 1–8. Approximately 1000 lines have been assigned. The earlier analysis of the 000–000 band has been extended and improved molecular constants obtained. The Hamiltonian used for this band does not fit the excited state levels with [Formula: see text]. Term values are therefore given for all observed levels. Empirical formulas are presented which give approximate fits to the higher levels. Numerous rotational perturbations are found in the excited state. Perturbations up to 0.6 cm−1 are also found in the 000 level of the excited state. These latter perturbations can only be caused by the higher vibrational levels of the ground state.



A new absorption spectrum has been found in the flash photolysis of H 3 BCO which, from its structure and the observed isotope shifts can be unambiguously assigned to the free BH 2 radical. The spectrum represents a transition similar to those previously observed in NH 2 and CH 2 . The molecule is linear in the excited state but bent (with an angle of 131°) in the ground state. Molecular constants and geometrical data are evaluated. The electronic transition is 2 B 1 ( II u ) – 2 A 1 and fits well with expectation from the Walsh diagram for X H 2 molecules.



The A 2 Σ+ -X 2 II 1 (a) absorption system of the NCO free radical has been re-investigated with higher resolving power than in the earlier work of Dixon (i960). Particular emphasis has been directed to the rotational analyses of bands involving the three vibronic levels, μ 2 Σ (+) , 2 Δ i -(a) and k 2 Σ (-) , associated with the first level of the bending vibration in the ground state. A misassignment in the earlier work has been corrected and a new value for the Renner parameter determined, namely ε = -0.144 ± 0.001. This revised value removes the discrepancy noted in the earlier electron resonance results.



1981 ◽  
Vol 59 (12) ◽  
pp. 1908-1916 ◽  
Author(s):  
M. Barnett ◽  
E. A. Cohen ◽  
D. A. Ramsay

Absorption spectra of isotopically enriched 81Br16O and of normal BrO have been obtained by the flash photolysis of mixtures of bromine and ozonized oxygen. Rotational analyses are given for the 7–0, 12–0, 18–0, 19–0, 20–0, 21–0, 7–1, and 20–1 A2Π3/2–X2Π3/2 sub-bands of 81Br16O. The value for [Formula: see text] is found to be 722.1 ± 1.1 cm−1 in good agreement with the value calculated from microwave constants. Several additional bands have been found at the long wavelength end of the spectrum, necessitating a revision of the vibrational numbering scheme for both the emission and absorption bands. "Hot" bands up to ν″ = 6 have been observed in the absorption spectrum for the 2Π3/2 component of the ground state but no bands have yet been identified from the 2Π1/2 component.



1942 ◽  
Vol 20a (6) ◽  
pp. 71-82 ◽  
Author(s):  
A. E. Douglas ◽  
G. Herzberg

In a discharge through helium, to which a small trace of benzene vapour is added, a new band system of the type 1Π – 1Σ is found which is shown to be due to the CH+ molecule. The R(0) lines of the 0–0, 1–0, and 2–0 bands of the new system agree exactly with the hitherto unidentified interstellar lines 4232.58, 3957.72, 3745.33 Å, thus proving that CH+ is present in interstellar space. At the same time this observation of the band system in absorption shows that the lower state 1Σ is the ground state of the CH+ molecule. The new bands are closely analogous to the 1II – 1Σ+ BH bands. The analysis of the bands leads to the following vibrational and rotational constants of CH+ in its ground state: [Formula: see text], Be″ = 14.1767, αe″ = 0.4898 cm.−1. The internuclear distance is re″ = 1.1310∙10−8 cm. (for further molecular constants see Table V). From the vibrational levels of the upper 1Π state the heat of dissociation of CH+ can be obtained within fairly narrow limits: D0(CH+) = 3.61 ± 0.22 e.v. From this value the ionization potential of CH is derived to be I(CH) = 11.13 ± 0.22 e.v. The bearing of this value on recent work on ionization and dissociation of polyatomic molecules by electron impacts is briefly discussed.



1976 ◽  
Vol 54 (13) ◽  
pp. 1343-1359 ◽  
Author(s):  
E. A. Colbourn ◽  
M. Dagenais ◽  
A. E. Douglas ◽  
J. W. Raymonda

The absorption spectrum of F2 in the 780–1020 Å range has been photographed at sufficient resolution to allow a rotational analysis of many bands. A large number of vibrational levels of three ionic states have been observed and their rotational constants determined. Many perturbations in the rotational structure caused by the interaction between the three states have been investigated and the interaction energies determined. The rotational and vibrational structures of a few Rydberg states have also been analyzed in detail but no Rydberg series have been identified. The difficulties in assigning the observed states are discussed. A 1Σu+ – X1Σg+ emission band system has been observed in the 1100 Å region. An analysis of the bands of this system has allowed us to determine the term values and rotational constants of all the vibrational levels of the ground state with ν ≤ 22. The dissociation energy, D0(F2), is found to be greater than 12 830 and is estimated to be 12 920 ± 50 cm−1.



A fairly extensive absorption spectrum o f the free HCO radical produced by flash photolysis of acetaldehyde and other substances has been investigated with long absorbing paths and under high resolution. The corresponding DCO spectrum has also been studied. The absorption spectrum consists of simple bands with P, Q and R branches. It is shown that the molecule is linear in the upper state, but bent in the lower state with an angle of about 120° and a CO bond length of approximately 1.20 Å. Rotational constants of HCO and DCO in both upper and lower states have been derived. Various arguments based on the high-resolution measurements lead to the conclusion that the main progression of bands corresponds to transitions to the vibrational levels of the upper state with even v' 2 (the vibrational quantum number of the bending mode). This conclusion is confirmed by the observation under low dispersion of some of the intermediate bands with odd v’ 2 which are diffuse and therefore not easily recognizable under high resolution. Apparently all levels of the upper state with l≠0 are predissociated. The type of the electronic transition is shown to be 2 Σ+ ← 2 A”, that is, the transition moment is perpendicular to the molecular plane. The lower state cannot arise from normal CO and H.



1970 ◽  
Vol 48 (7) ◽  
pp. 901-914 ◽  
Author(s):  
W. J. Balfour ◽  
A. E. Douglas

The absorption spectrum of the Mg2 molecule, which occurs in a furnace containing Mg vapor, has been photographed with a high resolution spectrograph. The rotational structures of the bands have been analyzed and the rotational and vibrational constants of the two states determined. The bands are found to arise from a 1Σ–1Σ transition between a very lightly bonded ground state and a more stable excited state. The R.K.R. potential energy curve of the ground state, which has a dissociation energy of 399 cm−1, has been determined. The more important constants of the ground state are ωe = 51.12 cm−1, ωexe = 1.64 cm−1, re = 3.890 Å and those of the upper state are ωe = 190.61 cm−1, ωexe = 1.14 cm−1, re = 3.082 Å.



Sign in / Sign up

Export Citation Format

Share Document