The rotational analysis of the A1Π–X1Σ+ system of Si130Te

1992 ◽  
Vol 70 (5) ◽  
pp. 291-294 ◽  
Author(s):  
Sheila Gopal ◽  
M. Singh ◽  
G. Lakshminarayana

The emission spectrum of Si130Te was excited by microwave discharge (2450 MHz) in a sealed quartz tube. The A1Π–X1Σ+ band system (3100–3900 Å) (1 Å = 10−10 m) photographed under high resolution on a 10.6 m Ebert grating spectrograph. The rotational analysis of 32 bands was carried out, which led to the determination of the accurate vibrational and rotational constants. The rotational structure belonging to ν′ > 9 levels appear to be perturbed.

1971 ◽  
Vol 49 (10) ◽  
pp. 1249-1254 ◽  
Author(s):  
Midori Shimauchi

The emission spectrum of the AsS radical, excited in a quartz tube by a 2450 MHz oscillator, was photographed on a high resolution spectrograph from 2450 to 6900 Å. Seven bands around 6000 Å showing clear rotational structures were chosen for the first rotational analysis of the AsS spectrum. The bands were found to arise from a 2Π3/2–2Π3/2 transition. The rotational and vibrational constants of the two states derived from the present work are consistent with the previous vibrational analysis of the A′2Π3/2–X2Π3/2 system. The constants of the upper doublet component of the ground state, X2Π3/2, are ωe = 562.40 cm−1, ωexe = 2.02 cm−1, re = 2.0216 Å; the constants of the A′2Π3/2 state are ΔG′(1/2) = 403.37 cm−1, ν0,0 = 18 621.21 cm−1, re = 2.2500 Å.


1964 ◽  
Vol 42 (4) ◽  
pp. 690-695 ◽  
Author(s):  
K. Madhusudana Rao ◽  
P. Tiruvenganna Rao

The rotational structure of the (0, 0), (0, 1), (0, 2), and (1, 0) bands of the visible band system (A–X1) of PbF has been examined in the second order of a 21-ft concave grating spectrograph having a dispersion of 1.25 Å/mm. A rotational analysis of the bands has led to a determination of the rotational constants of the upper and lower states. From consideration of electron configurations it is suggested that the system arises from a [Formula: see text] transition which is a case c equivalent of [Formula: see text].


1969 ◽  
Vol 47 (9) ◽  
pp. 979-994 ◽  
Author(s):  
R. Colin

The absorption spectrum of SO radicals produced by flash photolysis of a mixture of COS + O2 + Ar is investigated. A partial rotational analysis of the previously known bands of the B3Σ−–X3Σ− transition which lie in the region of 1900 to 2400 Å is presented, and the predissociations and perturbations of the B3Σ−state are discussed. A complex red-degraded band system near 2500 Å, previously observed in emission and attributed to SO2, is shown to be due to a 3Π–X3Σ− transition of the SO molecule. Effective rotational constants of the 3Π state are derived from the analysis of these bands photographed at high resolution. In order to obtain the vibrational numbering of the 3Π–X3Σ− bands, these were also photographed in emission from a microwave discharge through a mixture of S18O2 + S16O2. A general discussion of the currently known states of the SO molecule is given.


1967 ◽  
Vol 45 (2) ◽  
pp. 301-309 ◽  
Author(s):  
R. Colin ◽  
W. E. Jones

When a mixture of N2 and Cl2 is pumped rapidly through a mild microwave discharge, an orange afterglow is observed downstream from the discharge. The spectrum of this weak emission consists of a prominent double-headed band, the strongest head lying at 6 648.6 Å, and a number of weaker similar bands forming three sequences. Observed isotopic shifts have been used to identify the emitter as NCl. The rotational analysis of the strongest (0–0) band, photographed with high resolution, shows that these bands represent the b1Σ+–X3Σ− transition of the NCl molecule. The vibrational and rotational constants were determined for both states; we find ωe′ = 935.6 cm−1, ωo″ = 827.0 cm−1, γ0′ = 1.565 3 Å, and γ0″ = 1.608 3 Å.


1966 ◽  
Vol 44 (10) ◽  
pp. 2241-2245 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The E band system of 63Cu127I, lying in the region 3 700 to 4 700 Å, has been photographed in emission under high resolution. Rotational analysis of the (0–4), (0–3), (0–2), (0–1), (0–0), (1–1), (1–0), (2–0), and (3–2) bands has been made. The electronic transition involved is found to be 1Σ (E1Σ)–1Σ(X1Σ). The rotational constants obtained are as follows:[Formula: see text]


1967 ◽  
Vol 45 (11) ◽  
pp. 3663-3666 ◽  
Author(s):  
K. M. Lal ◽  
B. N. Khanna

The emission spectrum of the A–X system of the PbBr molecule in the region 4 600–5 900 Å has been obtained in the second order of a 21-ft concave grating spectrograph (15 000 lines per inch) with a dispersion of 1.25 Å/mm. A rotational analysis of four bands—(3, 2), (2, 2), (3, 1), and (4, 1)—of this system has been done, leading to the determination of the following rotational constants:[Formula: see text]The system appears to be similar to the A-X system of the PbCl molecule in the visible region, and a [Formula: see text] transition has been suggested.


1968 ◽  
Vol 46 (13) ◽  
pp. 1539-1546 ◽  
Author(s):  
R. Colin

The 0–0, 1–1, 2–2, and 0–1 bands of the b1Σ+–X3Σ− transition of the SO molecule have been observed in the afterglow produced when COS + O2 is pumped rapidly through a microwave discharge. The two strongest bands, 0–0 and 1–1, which lie respectively at 9549.08 and 9626.13 Å, have been photographed at high resolution and have been analyzed. Using the known X3Σ− rotational constants, the vibrational and rotational constants of the 1Σ+ state (Tc = 10 509.97 cm−1) have been determined: ωc′ = 1067.66 cm−1, Bc′ = 0.70262 cm−1, and rc′ = 1.5005 Å. Rotational intensity distributions for 1Σ+–3Σ− transitions are discussed. The a1Δ state of SO is predicted to lie at T ~ 6350 cm−1.


1967 ◽  
Vol 45 (8) ◽  
pp. 2805-2807 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C band system of 63Cu81Br, lying in the region 3 900–4 600 Å, has been photographed in emission under high resolution and rotational analysis of the (2–0), (1–0), (0–0), (0–1), (0–2), and (1–3) bands carried out. The system is shown to involve a 1Σ(C1Σ)–1Σ(X1Σ) transition. The molecular constants of 63Cu81Br obtained from this fine-structure analysis are as follows:[Formula: see text]


1966 ◽  
Vol 44 (2) ◽  
pp. 337-352 ◽  
Author(s):  
R. A. Durie

Observation by the author (Durie 1951) of a well-developed band system in the emission from an iodine–fluorine flame provided the first evidence for the existence of iodine monofluoride (IF), the last of the six possible diatomic inter-halogen compounds to be detected. The spectrum, which lies in the region 4 300 to 7 600 Å, has since been photographed under high resolution using a 21-ft concave grating spectrograph. The rotational structure of the bands is shown to be consistent with an A3Π0+ → X1Σ transition in the IF molecule. A rotational and vibrational analysis of the bands has been carried out and the molecular constants evaluated for IF. The results are as follows:[Formula: see text]The present evidence relating to the value of the dissociation energy of IF is discussed.


1979 ◽  
Vol 57 (7) ◽  
pp. 1051-1058 ◽  
Author(s):  
R. Colin

Six bands of the b1Σ+–X3Σ− transition of the PBr molecule have been observed in a microwave discharge of PBr3 + He. High resolution spectra have allowed the rotational analysis of the 0–0 and 1–1 bands. The principal molecular constants obtained are:X3Σ−: P79Br; ωe = 458.35 cm−1, Be = 0.16067 cm−1; P81Br; ωe = 457.78 cm−1, Be = 0.15958 cm−1; re = 2.1714 Å.B1Σ+: P79Br; ωe = 485.47 cm−1, Be = 0.16509 cm−1; P81Br; ωe = 483.84 cm−1, Be = 0.16399 cm−1; re = 2.1421 Å and Te = 11779.75 cm−1.


Sign in / Sign up

Export Citation Format

Share Document