STRUCTURE OF THE BAND SPECTRUM OF THE CuBr MOLECULE: I. ROTATIONAL STRUCTURE OF THE C SYSTEM OF 63Cu81Br

1967 ◽  
Vol 45 (8) ◽  
pp. 2805-2807 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C band system of 63Cu81Br, lying in the region 3 900–4 600 Å, has been photographed in emission under high resolution and rotational analysis of the (2–0), (1–0), (0–0), (0–1), (0–2), and (1–3) bands carried out. The system is shown to involve a 1Σ(C1Σ)–1Σ(X1Σ) transition. The molecular constants of 63Cu81Br obtained from this fine-structure analysis are as follows:[Formula: see text]


1962 ◽  
Vol 40 (4) ◽  
pp. 412-422 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The F–X band system of Cu65Cl35 extending from 3700 to 4200 Å has been photographed in emission under high resolution. Rotational analysis of the (3,0), (2,0), (1,0), (0,0), (0,1), and (0,2) bands of the system has been made. The electronic transition involved is found to be 1Π–1Σ. The Λ-type doubling in the 1Π state is negligible. The principal molecular constants obtained are as follows (cm−1 units)[Formula: see text]



1962 ◽  
Vol 40 (4) ◽  
pp. 423-430 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The B and C band systems of Cu65Cl35 lying in the region 4600–5200 Å have been photographed in emission under high resolution. Rotational analysis of the (1,0), (0,0), and (0,1) bands of each system has been made. The analysis shows that the B and C systems involve transitions 1Π(B1Π)–X1Σ and 1Σ (C1Σ)–X1Σ respectively. Due to the influence of the closeby C1Σ state, the B1Π state shows appreciable Λ-type doubling. It is found that the B1Π and C1Σ states provide an instance closely resembling the case of Van Vleck's "pure precession". The principal molecular constants obtained for the initial states of the B and C systems of Cu65Cl35 are as follows (cm−1 units):[Formula: see text]



1962 ◽  
Vol 40 (10) ◽  
pp. 1443-1456 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
J. K. Brody ◽  
R. K. Asundi

The D and E band systems of Cu65Cl35, lying in the region 3900–4700 Å, have been photographed in emission under high resolution and rotational analysis of the (3,1), (2,0), (1,0), (0,0), and (0,1) bands of the D system and the (4,1), (3,0), (2,0), (1,0), (0,0), and (0,1) bands of the E system has been made. It has been assumed in the analysis that the D and E systems involve transitions 1Π (D1Π)−X1Σ and 1Σ (E1Σ)−X1Σ respectively. Fairly large Λ-doubling is observed in the D1Π state. Certain features in the E(0,0) band, which are not well understood, have been pointed out. The principal molecular constants obtained for the initial states of the D and E systems of Cu65Cl35 are as follows (cm−1):[Formula: see text]



1966 ◽  
Vol 44 (10) ◽  
pp. 2241-2245 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The E band system of 63Cu127I, lying in the region 3 700 to 4 700 Å, has been photographed in emission under high resolution. Rotational analysis of the (0–4), (0–3), (0–2), (0–1), (0–0), (1–1), (1–0), (2–0), and (3–2) bands has been made. The electronic transition involved is found to be 1Σ (E1Σ)–1Σ(X1Σ). The rotational constants obtained are as follows:[Formula: see text]



1987 ◽  
Vol 65 (12) ◽  
pp. 1594-1603 ◽  
Author(s):  
M. Singh ◽  
G. S. Ghodgaonkar ◽  
M. D. Saksena

The A2Π–X2Σ+ system of MgCl has been photographed at high resolution and analyzed for the rotational structure. Analysis of the low-frequency sub-bands of the 0–0, 0–1, and 0–2 bands showed that there is a nonzero Λ doubling in the common vibrational level ν′ = 0, thereby indicating that the A2Π state is regular and not inverted as presumed by earlier workers. Spin-doubling has been seen in the ν = 1 and 2 levels of the X2Σ+ state. Rotational analysis of the high-frequency sub-band has also been done for the 0–0 band.



1975 ◽  
Vol 53 (14) ◽  
pp. 1321-1326 ◽  
Author(s):  
M. Carleer ◽  
M. Herman ◽  
R. Colin

A rotational analysis has been performed on the 0–0 band of the A2Π–X2Σ+ transition of the BeBr molecule photographed at high resolution in emission from a beryllium hollow cathode in the presence of bromine vapor. The following principal molecular constants have been determined:[Formula: see text]



2018 ◽  
Vol 140 (48) ◽  
pp. 16807-16820 ◽  
Author(s):  
George E. Cutsail ◽  
Rahul Banerjee ◽  
Ang Zhou ◽  
Lawrence Que ◽  
John D. Lipscomb ◽  
...  


1966 ◽  
Vol 44 (2) ◽  
pp. 337-352 ◽  
Author(s):  
R. A. Durie

Observation by the author (Durie 1951) of a well-developed band system in the emission from an iodine–fluorine flame provided the first evidence for the existence of iodine monofluoride (IF), the last of the six possible diatomic inter-halogen compounds to be detected. The spectrum, which lies in the region 4 300 to 7 600 Å, has since been photographed under high resolution using a 21-ft concave grating spectrograph. The rotational structure of the bands is shown to be consistent with an A3Π0+ → X1Σ transition in the IF molecule. A rotational and vibrational analysis of the bands has been carried out and the molecular constants evaluated for IF. The results are as follows:[Formula: see text]The present evidence relating to the value of the dissociation energy of IF is discussed.



1979 ◽  
Vol 57 (7) ◽  
pp. 1051-1058 ◽  
Author(s):  
R. Colin

Six bands of the b1Σ+–X3Σ− transition of the PBr molecule have been observed in a microwave discharge of PBr3 + He. High resolution spectra have allowed the rotational analysis of the 0–0 and 1–1 bands. The principal molecular constants obtained are:X3Σ−: P79Br; ωe = 458.35 cm−1, Be = 0.16067 cm−1; P81Br; ωe = 457.78 cm−1, Be = 0.15958 cm−1; re = 2.1714 Å.B1Σ+: P79Br; ωe = 485.47 cm−1, Be = 0.16509 cm−1; P81Br; ωe = 483.84 cm−1, Be = 0.16399 cm−1; re = 2.1421 Å and Te = 11779.75 cm−1.



1992 ◽  
Vol 70 (5) ◽  
pp. 291-294 ◽  
Author(s):  
Sheila Gopal ◽  
M. Singh ◽  
G. Lakshminarayana

The emission spectrum of Si130Te was excited by microwave discharge (2450 MHz) in a sealed quartz tube. The A1Π–X1Σ+ band system (3100–3900 Å) (1 Å = 10−10 m) photographed under high resolution on a 10.6 m Ebert grating spectrograph. The rotational analysis of 32 bands was carried out, which led to the determination of the accurate vibrational and rotational constants. The rotational structure belonging to ν′ > 9 levels appear to be perturbed.



Sign in / Sign up

Export Citation Format

Share Document