quartz tube
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 44)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Bhagirath Ghimire ◽  
Bethany Patenall ◽  
Endre Szili ◽  
Nishtha Gaur ◽  
Pradeep Lamichhane ◽  
...  

Abstract This study investigates how addition of a second ground electrode in an argon plasma jet influences the production of hydrogen peroxide (H2O2) in deionised water (DIW). Briefly, plasma is ignited by purging argon gas through a quartz tube at 1 litre per minute and applying a sinusoidal voltage of 7 kV (peak-peak) at 23.5 kHz to a high voltage stainless steel needle electrode sealed inside the quartz tube surrounded by single or double copper ring(s) situated downstream of the high voltage electrode that served as the ground electrode(s). The mechanisms of H2O2 production are investigated through the electrical and optical plasma properties and chemical analysis of the treated DIW. We discover that the addition of a second ground electrode results in higher accumulation of charges on the wall of quartz tube of the plasma jet assembly resulting in an increase in the discharge current and dissipated power. This further leads to an increase in the electron temperature that more than doubles the H2O2 production through dissociative recombination of water vapour molecules, whilst still maintaining a biological tissue tolerable gas temperature. The double ground electrode plasma jet is shown to be highly effective at reducing the growth of common wound pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) in both planktonic and biofilm states whilst inducing a low level of cytotoxicity in HaCaT keratinocyte skin-like cells under certain conditions. The information provided in this study is useful in understanding the complex physicochemical processes that influence H2O2 production in plasma jets, which is needed to optimise the development of plasma sources for clinical applications.


Vacuum ◽  
2021 ◽  
pp. 110846
Author(s):  
Chuanwen Geng ◽  
Zhibin Ma ◽  
Peng Zhao ◽  
Meihua Zeng ◽  
Xiaodong Zhang

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3033
Author(s):  
Hong-Gang Zhang ◽  
Ya-Qi Zhuo ◽  
Xiao-Min Zhang ◽  
Leng Zhang ◽  
Piao-Yang Xu ◽  
...  

The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C60. However, the operating temperature of the traditional FVP apparatus is limited to ~1250 °C, which is not sufficient to overcome the high energy barriers of some reactions. Herein, we report an ultrahigh-temperature FVP (UT-FVP) apparatus with a controllable operating temperature of up to 2500 °C to synthesize fullerene C60 from a nonaromatic single carbon reactant, i.e., chloroform, at 1350 °C or above. Fullerene C60 cannot be obtained from CHCl3 using the traditional FVP apparatus because of the limitation of the reaction temperature. The significant improvements in the UT-FVP apparatus, compared to the traditional FVP apparatus, were the replacement of the quartz tube with a graphite tube and the direct heating of the graphite tube by impedance heating instead of indirect heating of the quartz tube using an electric furnace. Because of the higher temperature range, UT-FVP can not only synthesize fullerene C60 from single carbon nonaromatic reactants but sublimate some high-molecular-weight compounds to synthesize larger curved PAHs in the future.


2021 ◽  
Author(s):  
YiRan Zhang ◽  
Jianfen Li ◽  
Bolin Li ◽  
Zeshan Li ◽  
Yun He ◽  
...  

Abstract The developed Ni-La/Al2O3-CeO2-Bamboo charcoal (ACB) catalyst was applied to the co-pyrolysis of straw and plastic to produce hydrogen in a horizontal quartz tube pyrolysis furnace. In this study, the effects of the mixing ratio of straw and plastic, the presence and stability of the catalyst on the co-pyrolysis hydrogen production were investigated. Experiment showed that the addition of PE can increase the yield of H2 within a certain range, and the best mass ratio of 5:5 was found. In the co-pyrolysis process with the participation of the catalysts, the macromolecular tar can be cracked into combustible gases such as H2, and the H2 yield could be increased to 332.2ml/g (Ni-La/ACB) is much higher than 68.87ml/g without catalyst. Compared with Ni/ACB, Ni-La/ACB had been increased the alkalinity by adding La element and enhanced the carbon deposition resistance of the catalyst, which makes the catalyst maintain higher stability. This was also confirmed in stability test experiments.


2021 ◽  
Vol 16 (07) ◽  
pp. P07054
Author(s):  
A.G. Cunha ◽  
M.B. Cevolani ◽  
C.W. Cremasco ◽  
M.A. Schettino ◽  
T.E.P. Bueno ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 365
Author(s):  
Jae-Ho Suk ◽  
Sung-Chun Hong ◽  
Gil-Su Jang ◽  
Nong-Moon Hwang

Non-classical crystallization, in which charged nanoparticles (NPs) are the building blocks of film growth, has been extensively studied in chemical vapor deposition (CVD). Here, the deposition behavior of silicon oxide films by the two-step growth process, where NPs are generated in the gas phase at high temperature and deposited as films at low temperature, was studied in the CVD process. Although we supplied SiH4, H2, and N2, the deposited film turned out to be silicon oxide, which is attributed to relatively poor vacuum. Also, silicon oxide NPs were captured on transmission electron microscopy (TEM) carbon membranes of a copper grid for 10 s under various conditions. When the quartz tube with a conical nozzle was used, the size of nanoparticles increased drastically with increasing processing time (or delay time) and porous films with a rough surface were deposited. When the quartz tube without a nozzle was used, however, the size did not increase much with increasing processing time and dense films with a smooth surface were deposited. These results suggest that the size of nanoparticles is an important parameter for the deposition of dense films for two-step growth at low temperatures.


2021 ◽  
Vol 28 (2) ◽  
pp. 455-460
Author(s):  
Suchinda Sattayaporn ◽  
Somboonsup Rodporn ◽  
Pinit Kidkhunthod ◽  
Narong Chanlek ◽  
Chutarat Yonchai ◽  
...  

A well designed compact furnace has been designed for in situ X-ray absorption spectroscopy (XAS). It enables various heat ramps from 300 K to 1473 K. The furnace consists of heaters, a quartz tube, a circulated refrigerator and a power controller. It can generate ohmic heating via an induction process with tantalum filaments. The maximum heating rate exceeds 20 K min−1. A quartz tube with gas feedthroughs allows the mixing of gases and adjustment of the flow rate. The use of this compact furnace allows in situ XAS investigations to be carried out in transmission or fluorescence modes under controlled temperature and atmosphere. Moreover, the furnace is compact, light and well compatible to XAS. The furnace was used to study cationic oxidation states in Pr6O11 and NiO compounds under elevated temperature and reduced atmosphere using the in situ X-ray absorption near-edge structure (XANES) technique at beamline 5.2 SUT-NANOTEC-SLRI of the Synchrotron Light Research Institute, Thailand. At room temperature, Pr6O11 contains a mixture of Pr3+ and Pr4+ cations, resulting in an average oxidation state of +3.67. In situ XANES spectra of Pr (L 3-edge) show that the oxidation state of Pr4+ cations was totally reduced to +3.00 at 1273 K under H2 atmosphere. Considering NiO, Ni2+ species were present under ambient conditions. At 573 K, the reduction process of Ni2+ occurred. The Ni0/Ni2+ ratio increased linearly with respect to the heating temperature. Finally, the reduction process of Ni2+ was completely finished at 770 K.


Sign in / Sign up

Export Citation Format

Share Document