STRUCTURE OF THE BAND SPECTRUM OF THE CuI MOLECULE: I. ROTATIONAL STRUCTURE OF THE E SYSTEM OF 63Cu127I

1966 ◽  
Vol 44 (10) ◽  
pp. 2241-2245 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The E band system of 63Cu127I, lying in the region 3 700 to 4 700 Å, has been photographed in emission under high resolution. Rotational analysis of the (0–4), (0–3), (0–2), (0–1), (0–0), (1–1), (1–0), (2–0), and (3–2) bands has been made. The electronic transition involved is found to be 1Σ (E1Σ)–1Σ(X1Σ). The rotational constants obtained are as follows:[Formula: see text]

1962 ◽  
Vol 40 (4) ◽  
pp. 412-422 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The F–X band system of Cu65Cl35 extending from 3700 to 4200 Å has been photographed in emission under high resolution. Rotational analysis of the (3,0), (2,0), (1,0), (0,0), (0,1), and (0,2) bands of the system has been made. The electronic transition involved is found to be 1Π–1Σ. The Λ-type doubling in the 1Π state is negligible. The principal molecular constants obtained are as follows (cm−1 units)[Formula: see text]


1967 ◽  
Vol 45 (8) ◽  
pp. 2805-2807 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C band system of 63Cu81Br, lying in the region 3 900–4 600 Å, has been photographed in emission under high resolution and rotational analysis of the (2–0), (1–0), (0–0), (0–1), (0–2), and (1–3) bands carried out. The system is shown to involve a 1Σ(C1Σ)–1Σ(X1Σ) transition. The molecular constants of 63Cu81Br obtained from this fine-structure analysis are as follows:[Formula: see text]


1992 ◽  
Vol 70 (5) ◽  
pp. 291-294 ◽  
Author(s):  
Sheila Gopal ◽  
M. Singh ◽  
G. Lakshminarayana

The emission spectrum of Si130Te was excited by microwave discharge (2450 MHz) in a sealed quartz tube. The A1Π–X1Σ+ band system (3100–3900 Å) (1 Å = 10−10 m) photographed under high resolution on a 10.6 m Ebert grating spectrograph. The rotational analysis of 32 bands was carried out, which led to the determination of the accurate vibrational and rotational constants. The rotational structure belonging to ν′ > 9 levels appear to be perturbed.


1966 ◽  
Vol 44 (10) ◽  
pp. 2247-2250
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C and D band systems of 63Cu127I, lying in the region 4 100–4 800 Å, have been photographed in emission under high resolution. Rotational analysis of the (0–0), (0–1), and (0–2) bands of the C system and the (0–0), (0–1), (0–2), and (0–3) bands of the D system has been made. The C and D systems are found to involve 1Σ (C1Σ)–1Σ(X1Σ)and 1Π(D1Π)–1Σ(X1Σ) transitions respectively. The Λ-type splitting in the D1Π state is small. The rotational constants obtained are as follows (cm−1 units):[Formula: see text]


1964 ◽  
Vol 42 (4) ◽  
pp. 690-695 ◽  
Author(s):  
K. Madhusudana Rao ◽  
P. Tiruvenganna Rao

The rotational structure of the (0, 0), (0, 1), (0, 2), and (1, 0) bands of the visible band system (A–X1) of PbF has been examined in the second order of a 21-ft concave grating spectrograph having a dispersion of 1.25 Å/mm. A rotational analysis of the bands has led to a determination of the rotational constants of the upper and lower states. From consideration of electron configurations it is suggested that the system arises from a [Formula: see text] transition which is a case c equivalent of [Formula: see text].


1982 ◽  
Vol 60 (12) ◽  
pp. 1730-1742 ◽  
Author(s):  
M. Singh ◽  
M. D. Saksena

Several weak bands of AlO, degraded to the violet and occurring as wide doublets 200 cm−1 apart, have been observed in the region 3300–4000 Å, in emission from a high frequency discharge through a flowing mixture of AlCl3 vapour, oxygen, and argon. These bands have been identified as due to a new electronic transition C2πr–A2πi of AlO. This has been confirmed from a detailed rotational analysis of the 1–0 and 0–1 bands (heads, respectively, at 3481.92, 3506.09 Å and 3683.30, 3710.98 Å) from high resolution spectra. Numerous rotational perturbations have been found in both the C2π3/2 and C2π1/2 substates. Effective rotational constants have been determined for these substates. Λ-doubling has been observed even in the substate C2π3/2.


1988 ◽  
Vol 66 (11) ◽  
pp. 1012-1024 ◽  
Author(s):  
R. Kępa

Seven bands ((0–0) – (0–6)) belonging to the Herzberg system of 13C18O have been recorded in emission using conventional photographic spectroscopy. For the first time, lines of this system have been recorded at high resolution and identified. After the rotational analysis of bands, the rotational constants of the C1Σ+ (ν = 0) and A1Π (ν = 0–6) states, as well as the vibrational constants of the A1Π state, have been determined. A combined analysis of the bands of the Herzberg and Ångström systems have made it possible to determine the constants of the B1Σ+ state more precisely. Numerous rotational perturbations observed in the A1Π state in this isotopic molecule have been analyzed.


1962 ◽  
Vol 40 (4) ◽  
pp. 423-430 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The B and C band systems of Cu65Cl35 lying in the region 4600–5200 Å have been photographed in emission under high resolution. Rotational analysis of the (1,0), (0,0), and (0,1) bands of each system has been made. The analysis shows that the B and C systems involve transitions 1Π(B1Π)–X1Σ and 1Σ (C1Σ)–X1Σ respectively. Due to the influence of the closeby C1Σ state, the B1Π state shows appreciable Λ-type doubling. It is found that the B1Π and C1Σ states provide an instance closely resembling the case of Van Vleck's "pure precession". The principal molecular constants obtained for the initial states of the B and C systems of Cu65Cl35 are as follows (cm−1 units):[Formula: see text]


1969 ◽  
Vol 47 (9) ◽  
pp. 979-994 ◽  
Author(s):  
R. Colin

The absorption spectrum of SO radicals produced by flash photolysis of a mixture of COS + O2 + Ar is investigated. A partial rotational analysis of the previously known bands of the B3Σ−–X3Σ− transition which lie in the region of 1900 to 2400 Å is presented, and the predissociations and perturbations of the B3Σ−state are discussed. A complex red-degraded band system near 2500 Å, previously observed in emission and attributed to SO2, is shown to be due to a 3Π–X3Σ− transition of the SO molecule. Effective rotational constants of the 3Π state are derived from the analysis of these bands photographed at high resolution. In order to obtain the vibrational numbering of the 3Π–X3Σ− bands, these were also photographed in emission from a microwave discharge through a mixture of S18O2 + S16O2. A general discussion of the currently known states of the SO molecule is given.


1974 ◽  
Vol 52 (21) ◽  
pp. 2143-2149 ◽  
Author(s):  
J. Brion ◽  
J. Malicet ◽  
H. Guenebaut

The emission spectrum of the b′3Σu−–X1Σg+ system between 3540–4375 Å and ascribed previously by Mrozowski and Santaram to the a3Σu+–X1Σg+ transition of the P2 molecule, has been photographed under high resolution. The rotational analysis of 7 bands has been carried out and allowed us to determine the rotational constants of the vibrational levels ν′ = 0, 1, and 2 as well as the spin splitting constants λ′ and γ′. The nature of the upper state has been identified as a 3Σu− state, the electronic transition being analogous to the Ogawa–Tanaka–Wilkinson system of N2.


Sign in / Sign up

Export Citation Format

Share Document