Geotechnical resistance factors for ultimate limit state design of deep foundations in cohesive soils

2011 ◽  
Vol 48 (11) ◽  
pp. 1729-1741 ◽  
Author(s):  
Mehrangiz Naghibi ◽  
Gordon A. Fenton

This paper investigates the ultimate limit state load and resistance factor design (LRFD) of deep foundations founded within purely cohesive soils. The geotechnical resistance factors required to produce deep foundation designs having a maximum acceptable failure probability are estimated as a function of site understanding and failure consequence. The probability theory developed in this paper, used to determine the resistance factors, is verified by a two-dimensional random field Monte Carlo simulation of a spatially variable cohesive soil. The agreement between theory and simulation is found to be very good, and the theory is then used to derive the required geotechnical resistance factors. The results presented in this paper can be used to complement current ultimate limit state design code calibration efforts for deep foundations in cohesive soils.

2011 ◽  
Vol 48 (11) ◽  
pp. 1742-1756 ◽  
Author(s):  
Gordon A. Fenton ◽  
Mehrangiz Naghibi

This paper investigates the probabilistic nature of ultimate limit state failures of deep foundations in purely frictional soils (e.g., sands). In so doing, the theory required to predict both the probability of ultimate limit state failure and the resistance factors needed to avoid this limit state are proposed. The proposed resistance factors are functions of site understanding and failure consequence, and the theory leading to these resistance factors is validated via Monte Carlo simulation of a two-dimensional spatially variable random field. In both the theory and the simulation, a pile is assumed to be placed vertically at a certain position in the soil mass, and the soil is sampled at various distances from the pile to come up with characteristic soil properties (namely friction angle) for use in the pile design. Agreement between theory and simulation is found to be very good. The theoretical model is then employed to determine upper bound geotechnical resistance factors, which can be used to complement current ultimate limit state design code calibration efforts. An example of such a calibration is presented.


2021 ◽  
Author(s):  
Olesja Befus

The objective of this thesis is to develop a precast and prestressed concrete design for a factory hall, which was initially planned as a steel structure. Furthermore, a structural analysis is conducted on several chosen structural elements according to the European Standards and the German Annexes respectively. The analysis is done both by manual calculation and software calculation for comparison and includes the ultimate limit state design, the serviceability limit state design and the design for the state of transportation and assembly of the precast members. Lastly, to illustrate the results of the analysis, an overview drawing with the new concrete design as well as formwork and reinforcement drawings for each of the analyzed structural members are developed.


Sign in / Sign up

Export Citation Format

Share Document