COST-EFFECTIVE AND RELIABLE DESIGN OF A SOLAR THERMAL POWER PLANT

Author(s):  
A. A. Aliabadi ◽  
J. S. Wallace

A design study was conducted to evaluate the cost-effectiveness of solar thermal power generation in a 50 kWe power plant that could be used in a remote location. The system combines a solar collector-thermal storage system utilizing a heat transfer fluid and a simple Rankine cycle power generator utilizing R123 refrigerant. Evacuated tube solar collectors heat mineral oil and supply it to a thermal storage tank. A mineral oil to refrigerant heat exchanger generates superheated refrigerant vapor, which drives a radial turbogenerator. Supplemental natural gas firing maintains a constant thermal storage temperature irregardless of solar conditions enabling the system to produce a constant 50 kWe output. A simulation was carried out to predict the performance of the system in the hottest summer day and the coldest winter day for southern California solar conditions. A rigorous economic analysis was conducted. The system offers advantages over advanced solar thermal power plants by implementing simple fixed evacuated tube collectors, which are less prone to damage in harsh desert environment. Also, backed up by fossil fuel power generation, it is possible to obtain continued operation even during low insolation sky conditions and at night, a feature that stand-alone PV systems do not offer.

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 935 ◽  
Author(s):  
Jorge Llamas ◽  
David Bullejos ◽  
Manuel Ruiz de Adana

The evolution of electric generation systems, according to relevant legislation, allows for the parallel evolution of the installed power capacity of renewable resources with the development of technologies for renewable resources, therefore optimizing the choice of energy mix from renewable resources by prioritizing the implementation of concentrating solar thermal plants. Thanks to their great potential, parabolic trough solar thermal power plants have become the most widely spread type of electricity generation by renewable solar energy. Nonetheless, the operation of the plant is not unique; it must be adapted to the parameters of solar radiation and market behavior for each specific location. This work focuses on the search for the optimal strategies of operation by a mathematical model of a 50 MWe parabolic trough thermal power plant with thermal storage. The analysis of the different ways of operation throughout a whole year, including model verification via a currently operating plant, provides meaningful insights into the electricity generated. Focused to work under non-regulated electricity markets to adjust this type of technology to the European directives, the presented model of optimization allows for the adaptation of the curve of generation to the network demands and market prices, rising the profitability of the power plant. Thus, related to solar resources and market price, the economic benefit derived from the electricity production improves between 5.17% and 7.79%.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


Author(s):  
Khamid Mahkamov ◽  
Piero Pili ◽  
Roberto Manca ◽  
Arthur Leroux ◽  
Andre Charles Mintsa ◽  
...  

The small solar thermal power plant is being developed with funding from EU Horizon 2020 Program. The plant is configured around a 2-kWel Organic Rankine Cycle turbine and solar field, made of Fresnel mirrors. The solar field is used to heat thermal oil to the temperature of about 240 °C. This thermal energy is used to run the Organic Rankine Cycle turbine and the heat rejected in its condenser (about 18-kWth) is utilized for hot water production and living space heating. The plant is equipped with a latent heat thermal storage to extend its operation by about 4 hours during the evening building occupancy period. The phase change material used is Solar salt with the melting/solidification point at about 220 °C. The total mass of the PCM is about 3,800 kg and the thermal storage capacity is about 100 kWh. The operation of the plant is monitored by a central controller unit. The main components of the plant are being manufactured and laboratory tested with the aim to assemble the plant at the demonstration site, located in Catalonia, Spain. At the first stage of investigations the ORC turbine will be directly integrated with the solar filed to evaluate their joint performance. During the second stage of tests, the Latent Heat Thermal Storage will be incorporated into the plant and its performance during the charging and discharging processes will be investigated. It is planned that the continuous filed tests of the whole plant will be performed during the 2018–2019 period.


Sign in / Sign up

Export Citation Format

Share Document