synthetic oil
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 39)

H-INDEX

17
(FIVE YEARS 3)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122786
Author(s):  
Shadi A. Saeed ◽  
Usman Taura ◽  
Yahya Al-Wahaibi ◽  
Ameen A. Al-Muntaser ◽  
Chengdong Yuan ◽  
...  

2022 ◽  
pp. 155-175
Author(s):  
Ibrahim M. Alarifi
Keyword(s):  

2021 ◽  
pp. 100909
Author(s):  
Qinghong Wang ◽  
Jingmin Deng ◽  
Jiahao Liang ◽  
Liangyan Jiang ◽  
Muhammad Arslan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
A. Shalwan ◽  
B. F. Yousif ◽  
F. H. Alajmi ◽  
M. Alajmi

New lubricants based on vegetable oil were developed in this study. Different blends of canola oil mixed with fully synthetic two stock engine oils were developed (0, 20%, 40%, 60%, and 80% of synthetic oil).  The viscosity of the prepared blends was determined at different temperatures (20°C–80°C). Tribological experiments were conducted to investigate the effect of the newly developed oil on the wear characteristics of mild steel material compared with stainless steel when subjected to adhesive wear loading. The weight loss (WL) and the specific wear rate (SWR) of the mild steel using each of the prepared lubricants were determined. Scanning electron microscopy was used to examine the worn surface of the mild steel. The results revealed that pure canola oil as a lubricant performed competitively against a blend of 80% synthetic and 20% canola oils. The viscosity of the canola oil and its various blends with synthetic oil are controlled by the environmental temperature since an increased temperature reduces the viscosity. Also, the experimental results revealed that operating parameters play the main role in controlling the wear behavior of mild steel since increasing the sliding distances increases the weight loss. The specific wear rate exhibited a steady state after about 5 km sliding distance, and different blends influenced the applied loads and velocity differently. The mixing ratio of canola and syntactic oil was not particularly significant since the pure canola oil exhibited competitive wear performance compared with the blends. However, an intermediate mixing ratio (40%–60% synthetic oil mixed with 60%–40% canola) can produce a slightly low specific wear rate among other things.


2021 ◽  
Vol 4 (2) ◽  
pp. 82-87
Author(s):  
Asilah Ahmad Samsuir ◽  
Norhisyam Ismail ◽  
Rozidaini Mohd Ghazi

Oily wastewater is one of the environmental concerns nowadays. The seriousness of oil pollution problem comes in sync with the expansion of oil exploration and production activities, as well as industrial growth around the world. In this study, the ability of sugarcane bagasse in removing oil in synthetic oil wastewater was investigated. Parameters affecting oil removal such as concentrations of synthetic oil wastewater, biosorbent dosage and contact time were optimized using Response Surface Methodology (RSM) via Box Behnken Design. Sugarcane bagasse showed excellent efficiency in removing oil with percentage removal up to 98.73% at 1.3 h contact time with 3.06 g of biosorbent dosage and 16.9% of synthetic oil wastewater concentration. The use of sugarcane bagasse in removing oil in water was successfully prove in this study.


2021 ◽  
pp. 77-80
Author(s):  

The influence of additives of naphthalene derivatives on the formation of boundary lubricating layers during friction in a dioctyl sebacate synthetic oil is considered. It is determined, that the activity of the additives is determined by the presence of acidic groups in their molecules and the ability to form complex compounds with metals. Keywords: boundary film, dioctyl sebacate, naphthalene derivatives, complex formation, lubricating properties [email protected]


2021 ◽  
Author(s):  
Rishabh Chaudhary ◽  
Lovlesh Kaushik ◽  
Michael H. Azarian ◽  
Michael Pecht

Abstract This paper presents a comparison between the performances of two chemistries of synthetic oil lubricants, polyalphaolefins (PAOs) and perfluoropolyethers (PFPEs) when applied on gold-plated electrical contacts operating at contact loads of 9.8 cN and experiencing fretting-induced degradation. Performance assessment was done using the contact resistance and coefficient of friction behavior and the surface’s response to fretting in the presence of different types of lubricants within the two chemistries. It was found that the PAOs improved the fretting performance of the lightly loaded contacts, and statistically, were at least fifty times more reliable for a longer duration of fretting cycles than the PFPEs, suggesting their suitability for low contact load applications. At low loads, PFPEs underwent contact separation due to hydrodynamic lubrication, and the behavior was more observable among the PFPEs having higher kinematic viscosities. On the contrary, viscous PAOs had improved fretting performance and delayed time to contact failure than less viscous PAOs. The applied lubricant film thickness also contributed to the contact’s performance, and it was found that increasing the thickness of the PFPE films advanced contact failures, while the PAO film postponed contact’s time to failure.


Sign in / Sign up

Export Citation Format

Share Document