Gaussian basis sets for the atoms from K through Xe

2001 ◽  
Vol 79 (2) ◽  
pp. 121-123 ◽  
Author(s):  
R Centoducatte ◽  
E VR de Castro ◽  
F E Jorge

An improved generator coordinate Hartree-Fock (IGCHF) method is used to generate Gaussian basis sets for the atoms from K (Z = 19) through Xe (Z = 54). The Griffin-Hill-Wheeler-HF equations are integrated using the integral discretization technique. The ground state HF total energies obtained by us are compared with those calculated with the original GCHF method and with other approaches reported in the literature. The largest difference between our energy values and the corresponding ones computed with a numerical HF method is equal to 6.003 mhartree for Kr (Z = 36).Key words: improved generator coordinate Hartree-Fock method, Gaussian basis sets, total energies.

2001 ◽  
Vol 73 (4) ◽  
pp. 511-517 ◽  
Author(s):  
EUSTÁQUIO V. R. DE CASTRO ◽  
FRANCISCO E. JORGE

The generator coordinate Hartree-Fock method is used to generate adapted Gaussian basis sets for the atoms from Li (Z=3) through Xe (Z=54). In this method the Griffin-Hill-Wheeler-Hartree-Fock equations are integrated through the integral discretization technique. The wave functions generated in this work are compared with the widely used Roothaan-Hartree-Fock wave functions of Clementi and Roetti (1974), and with other basis sets reported in the literature. For all atoms studied, the errors in our total energy values relatively to the numerical Hartree-Fock limits are always less than 7.426 mhartree.


1993 ◽  
Vol 48 (7) ◽  
pp. 834-840
Author(s):  
Wolfhard Koch ◽  
Klaus Neymeyr ◽  
Markus Pernpointner ◽  
Barbara Schaper ◽  
Klaus Strecker

Abstract A comparison of numerical Simplified Unrestricted Hartree-Fock (SUHF) results (electronic ground state configurations, total energies, first ionization potentials, atomic charges, atomic spin densities of diatomic molecules) with those of equivalent standard calculations suggests the applicability of the non-empirical but drastically simplified procedure. SUHF may even approach ab initio quality obtained with simple (STO-3G) contracted Gaussian basis sets.


Author(s):  
Amanda Ribeiro Guimaraes ◽  
Rugles César Barbosa ◽  
Ana Cristina Tello Mora ◽  
Aldineia Pereira da Silva ◽  
Júlia Maria Aragon Alves ◽  
...  

The polynomial Generator Coordinate Hartree-Fock Gaussian basis sets, pGCHF, for the atoms Na, Mg, Al, Si, P, S, and Cl were generated using the generator coordinate method based on polynomial...


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Raimundo Dirceu de Paula Ferreira ◽  
Marcos Antonio Barros dos Santos ◽  
Maycon da Silva Lobato ◽  
Jardel Pinto Barbosa ◽  
Marcio de Souza Farias ◽  
...  

In previous articles we reported through theoretical studies the piezoelectric effect in BaTiO3, SmTiO3, and YFeO3. In this paper, we used the Douglas-Kroll-Hess (DKH) second-order scalar relativistic method to investigate the piezoelectricity in YTiO3. In the calculations we used the [6s4p] and [10s5p4d] Gaussian basis sets for the O (3P) and Ti (5S) atoms, respectively, from the literature in combination with the (30s21p16d)/[15s9p6d] basis set for the Y (3D) atom, obtained by generator coordinate Hartree-Fock (GCHF) method, and they had their quality evaluated using calculations of total energy and orbital energies (HOMO and HOMO-1) of the 2TiO+1 and 1YO+1 fragments. The dipole moment, the total energy, and the total atomic charges in YTiO3 in Cs space group were calculated. When we analyze those properties we verify that it is reasonable to believe that YTiO3 does not present piezoelectric properties.


Sign in / Sign up

Export Citation Format

Share Document