Oxyhalogen–sulfur chemistry — Kinetics and mechanism of oxidation of methionine by aqueous iodine and acidified iodate
The oxidation of methionine (Met) by acidic iodate and aqueous iodine was studied. Though the reaction is a simple two-electron oxidation to give methionine sulfoxide (Met–S=O), the dynamics of the reaction are, however, very complex, characterized by clock reaction characteristics and transient formation of iodine. In excess methionine conditions, the stoichiometry of the reaction was deduced to be IO3– + 3Met → I– + 3Met–S=O. In excess iodate, the iodide product reacts with iodate to give a final product of molecular iodine and a 2:5 stoichiometry: 2IO3– + 5Met + 2H+ → I2 + 5Met–S=O + H2O. The direct reaction of iodine and methionine is slow and mildly autoinhibitory, which explains the transient formation of iodine, even in conditions of excess methionine in which iodine is not a final product. The whole reaction scheme could be simulated by a simple network of 11 reactions.