desiccation tolerance
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 144)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 673
Author(s):  
Sulman Siddique ◽  
Muhammad Naveed ◽  
Muhammad Yaseen ◽  
Muhammad Shahbaz

Water scarcity is abiotic stress that is becoming more prevalent as a result of human activities, posing a threat to agriculture and food security. Recently, endophytic bacteria have been proven to reduce drought stress and increase crop productivity. Here, we explored the efficacy of seed endophytic bacteria in maize crops under water deficit conditions. For this purpose, twenty-seven endophytic bacteria have been isolated from three distinct maize cultivars seeds (Malka 2016, Sahiwal Gold and Gohar-19) and evaluated for desiccation tolerance of −0.18, −0.491, and −1.025 MPa induced by polyethylene glycol (PEG) 6000. The nine isolates were chosen on the basis of desiccation tolerance and evaluated for maize growth promotion and antioxidant activity under normal and drought conditions. Results showed that drought stress significantly decreased the growth of maize seedlings. However, isolates SM1, SM4, SM19, and SM23 significantly improved the root and shoot length, plant biomass, leaf area, proline content, sugar, and protein content under normal and drought conditions. Antioxidant enzymes were significantly decreased at p-value < 0.05 with inoculation of seed endophytic bacteria under drought conditions. However, further experiments of seed endophytic bacteria (SM1, SM4, SM19, and SM23) should be conducted to validate results.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chengqian Qian ◽  
Min Huang ◽  
Yuhui Du ◽  
Jingjie Song ◽  
Huiqian Mu ◽  
...  

Cronobacter sakazakii is an opportunistic pathogen causing a lethality rate as high as 80% in infants. Desiccation tolerance ensures its survival in powdered infant formula (PIF) and contributes to the increased exposure to neonates, resulting in neonatal meningitis, septicemia, and necrotizing enterocolitis. This study showed that a food-isolated C. sakazakii G4023 strain exhibited a stronger desiccation tolerance than C. sakazakii ATCC 29544 strain. Considering the proven pathogenicity of G4023, it could be a big threat to infants. Transcriptome and proteome were performed to provide new insights into the desiccation adaptation mechanisms of G4023. Integrated analyses of these omics suggested that 331 genes were found regulated at both transcriptional and protein levels (≥2.0- and ≥1.5-fold, respectively). Deletion of chemotaxis system encoded genes cheA and cheW resulted in decreased tolerance in both short- and long-term desiccation. Reduced O-antigen chain length contributed to the biofilm formation and desiccation tolerance in the short term rather than the long term. In addition, biosynthesis of flagella, arginine and its transport system, and Fe/S cluster were also observed regulated in desiccated G4023. A better understanding of desiccation adaptation mechanisms of G4023 could in turn guide the operations during production and preservation of PIF or other food to reduce survival odds of G4023 and lower its exposure to get to infants.


2022 ◽  
Vol 125 (1) ◽  
Author(s):  
Lloyd R. Stark ◽  
Joshua L. Greenwood ◽  
John C. Brinda

2021 ◽  
Author(s):  
Ruth R. Finkelstein ◽  
Tim Lynch ◽  
Guillaume Nee ◽  
Avan Chu ◽  
Thorben Krüger ◽  
...  

Overexpression of ABI5/ABF interacting proteins (AFPs) results in extreme ABA resistance of seeds and failure to acquire desiccation tolerance, at least in part through effects on chromatin modification. This study tests the hypothesis that the AFPs promote germination by also functioning as adapters for E3 ligases that ubiquitinate ABI5, leading to its degradation. Interactions between AFPs and two well-characterized classes of E3 ligases targeting ABI5, DWD HYPERSENSITIVE TO ABA (DWA)s and KEEP ON GOING (KEG), were analyzed by yeast two-hybrid, bimolecular fluorescence complementation, and genetic assays. Although the AFPs and E3 ligases showed weak direct interactions, loss of function for the E3 ligases did not impair ABA-resistance conferred by overexpression of the YFP-AFP2 fusion. Comparison of ABI5 and AFP2 levels in these lines showed that AFP2 accumulation increased during germination, but that ABI5 degradation followed germination, demonstrating that AFP2 controls ABA sensitivity during germination independently of ABI5 degradation. Surprisingly, AFP2 overexpression in the dwa1 dwa2 mutant background produced the unusual combination of extreme ABA resistance and desiccation tolerance, creating an opportunity to separate the underlying biochemical characteristics of ABA sensitivity and desiccation tolerance that we investigated by quantitative proteomics. Our analysis identified at least three-fold more differentially accumulated seed proteins than previous studies. Comparison of dry seed proteomes of the different genotypes allowed us to separate and refine the changes in protein accumulation patterns correlating with desiccation tolerance independently of ABA sensitivity, or vice versa, to a subset of cold-induced and defense stress-responsive proteins and signaling regulators.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Angel J. Matilla

To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular “glass state”. This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2784
Author(s):  
Shandry M. Tebele ◽  
Rose A. Marks ◽  
Jill M. Farrant

Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta–Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jonathan D. Hibshman ◽  
Bob Goldstein

Abstract Background Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. Results We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1’s in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. Conclusions Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1242
Author(s):  
Hawwa Gabier ◽  
David L. Tabb ◽  
Jill M. Farrant ◽  
Mohamed Suhail Rafudeen

Vegetative desiccation tolerance, or the ability to survive the loss of ~95% relative water content (RWC), is rare in angiosperms, with these being commonly called resurrection plants. It is a complex multigenic and multi-factorial trait, with its understanding requiring a comprehensive systems biology approach. The aim of the current study was to conduct a label-free proteomic analysis of leaves of the resurrection plant Xerophyta schlechteri in response to desiccation. A targeted metabolomics approach was validated and correlated to the proteomics, contributing the missing link in studies on this species. Three physiological stages were identified: an early response to drying, during which the leaf tissues declined from full turgor to a RWC of ~70–80%, a mid-response in which the RWC declined to 40% and a late response where the tissues declined to 10% RWC. We identified 517 distinct proteins that were differentially expressed, of which 253 proteins were upregulated and 264 were downregulated in response to the three drying stages. Metabolomics analyses, which included monitoring the levels of a selection of phytohormones, amino acids, sugars, sugar alcohols, fatty acids and organic acids in response to dehydration, correlated with some of the proteomic differences, giving insight into the biological processes apparently involved in desiccation tolerance in this species.


Sign in / Sign up

Export Citation Format

Share Document