Theoretical calculation of the low-lying quartet states of the CrF molecule
The potential energy curves have been investigated for the 11 lowest quartet electronic states in the 2s+1Λ± representation below 28 000 cm–1 of the molecule CrF via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Eight electronic states have been studied theoretically for the first time. The harmonic frequency ωe, the internuclear distance re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent dipole moment μ have been calculated. By using the canonical functions approach, the eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points rmin and rmax have been calculated for electronic states up to the vibrational level v = 38. The comparison of these values to the theoretical results available in the literature shows a very good agreement.