scholarly journals The Crystal and Molecular Structure of Diazido-2,2′-bipyridinecopper(II)

1974 ◽  
Vol 52 (17) ◽  
pp. 3125-3133 ◽  
Author(s):  
Gordon W. Bushnell ◽  
Masood A. Khan

The crystal and molecular structure of diazido-2,2′-bipyridinecopper(II), C10H8N2(N3)2Cu, is determined by single crystal X-ray diffraction, and refined to an R value of 0.067. The cell dimensions are a = 664.9(2), b = 843.3(1), c = 1082.0(2) pm, α = 86.99(2)°, β = 87.77(3)°, γ = 78.59(2)°. The space group is [Formula: see text] (No. 2) with 2 molecules per unit cell and the measured density is 1.71(2) g cm−3. The copper coordination is square planar with two additional longer bonds. The coordinate bond lengths in pm to the bipyridine ligand are: Cu—N(1), 201.6(6); Cu—N(2), 201.9(6). The coordinate bonds to the azido ligands are: Cu—N(3), 194.9(6); Cu—N(6), 196.6(6). The longer bonds are: Cu—N(3)″, 268.0(8), Cu—N(6)′ 268.2(8). The N—N bond lengths within each azido ligand are unequal: N(3)—N(4), 118.2(10); N(4)—N(5), 115.4(11); N(6)—N(7), 119.2(9); N(7)—N(8), 114.8(9). The angles at N(3) and N(6) are both 130° and at N(4) and N(7) the angles are both 175(1)°. Each azide takes part in asymmetric bridging through a single nitrogen atom. The results are compared with other structural studies on azido complexes and to a nitrate complex of Ag(II) which is structurally similar.

1984 ◽  
Vol 39 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Ulf Thewalt ◽  
Konrad Holl

The compound S2N2 • 2AlBr3 has been prepared by reaction of S4N4 with AlBr3 in 1,2-dibromoethane at room temperature. Its crystal and molecular structure have been determined by X-ray diffraction; R = 0.068. Crystal data: monoclinic, P 21/n, a = 9.594(5), b = 9.975(4), c = 7.528(4) Å , β = 111.36(5)°. The S2N2 ring of the centrosymmetrical complex is bonded via its nitrogen atoms to two AlBr3 units thus completing coordination tetrahedra around the Al atoms. Bond distances and angles within the S2N2 ring are d(S-N) = 1.629(13) and 1.651(13) Å, ∢ (S-N-S) = 95.8, and ∢ (N-S-N) - 84.2°. Whereas the S-N bond lengths agree closely with those of free S2N2, the angle at N is enlarged by ca. 5° and the angle at S is decreased by ca. 5°. The sulfur atoms form two close S···Br contacts of length 3.149 (intramolecular) and 3.193 (intermolecular) Å , respectively. The intermolecular attractive nonbonded S···Br interactions tie the complexes together in a way that leads to infinite chains which run parallel to the crystallographic z axis


1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.


2017 ◽  
Vol 73 (8) ◽  
pp. 1148-1150
Author(s):  
Shravan Kumar Ellandula ◽  
Cosmos Opoku Amoako ◽  
Joel T. Mague ◽  
Perumalreddy Chandrasekaran

The unsymmetrical α-diimine ligand N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline, [ArN=C(Me)—(Et)C=NAr] [Ar = 2,6-(iPr)2C6H3], (I), and the corresponding palladium complex, cis-(N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)dichloridopalladium(II) 1,2-dichloroethane monosolvate, [PdCl2(C29H42N2)]·C2H4Cl2 or cis[PdCl2{I}], (II), have been synthesized and characterized. The crystal and molecular structure of the palladium(II) complex have been established by single-crystal X-ray diffraction. The compound crystallized along with a 1,2-dichloroethane solvent of crystallization. The coordination plane of the PdII atom shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the PdCl2 and PdN2 planes of 4.19 (8)°. The chelate ring is folded along the N...N vector by 7.1 (1)°.


1989 ◽  
Vol 67 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Eric Berry ◽  
Jane Browning ◽  
Gordon William Bushnell ◽  
Keith Roger Dixon ◽  
Alan Pidcock

Reaction of "cyclamphosphorane" (cyclamPH) with [Pt2Cl4(PEt3)2] yields [PtCl(PEt3)(cyclamPH)]Cl. The complex crystallizes as a dichloromethane solvate in the monoclinic space group P21/n, with a = 13.877(3), b = 23.231(7), c = 8.295(2)Å, β = 91.86(4)°, and an X-ray diffraction study shows square planar platinum coordination in which the labile proton of cyclamPH has transferred from phosphorus to nitrogen and the ligand is attached via simple [Formula: see text] chelation. The phosphorus is trans to chlorine in the platinum coordination plane.The corresponding product, trans-[PtCl2(PEt3)(cyclenPH2)]Cl, derived from reaction of "cyclenphosphorane" (cyclenPH) with [Pt2Cl4(PEt3)2], is shown by NMR studies to have a quite different structure in which the ligand is protonated at two nitrogen sites but not at phosphorus. The phosphorus is pentacoordinate with four attachments to nitrogen atoms and one to platinum. The two chlorine atoms are mutually trans in the platinum coordination plane. Keywords: crystal structure, cyclenphosphorane reaction, cyclamphosphorane reaction, X-ray diffraction.


1978 ◽  
Vol 56 (12) ◽  
pp. 1602-1609 ◽  
Author(s):  
Robert F. Stepaniak ◽  
Nicholas C. Payne

The crystal and molecular structure of trans-chloro(3-hydroxypropyl-N,N-dimethylaminocarbene)bis(dimethylphenylphosphine)platinum(II) hexafluorophosphate has been determined from three-dimensional X-ray data collected on an automated four circle diffractometer using CuKα radiation. The compound crystallizes in the orthorhombic space group Pna21, with Z = 4, and cell dimensions a = 14.403(2), b = 12.631(2), and c = 16.151(2) Å. Full matrix least-squares refinement on F gave a final conventional R factor of 0.047 for 3442 observations with I > 3σ(I). The cation coordination geometry is square planar, with the carbene ligand lying approximately perpendicular to the plane. The Pt—Cl bond length is 2.356(4) Å and the Pt—C(carbene) distance is 1.978(12) Å. The C(carbene)—N bond length is 1.293(16) Å. These dimensions are discussed in terms of the trans influences of the carbene and chloride ligands and the bonding in the carbene species.


1978 ◽  
Vol 33 (7) ◽  
pp. 753-755 ◽  
Author(s):  
G. Struckmeier ◽  
J. Engel ◽  
U. Thewalt

Abstract The crystal and molecular structure of the title compound has been determined by X-ray diffraction. The compound possesses an (almost) planar Z configuration. The ions form ion pairs in the solid state: each bromide anion is connected via two hydrogen bonds with a cation. The crystal data are: space group P21/n with Z = 4; cell dimensions a = 14.097(2), b = 11.591(2), c = 14.133(3) Å, β = 106,22(2)°.


Sign in / Sign up

Export Citation Format

Share Document