tryptophan metabolites
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 119)

H-INDEX

36
(FIVE YEARS 10)

2022 ◽  
Vol 20 (4) ◽  
pp. 103-111
Author(s):  
A. V. Shestopalov ◽  
O. P. Shatova ◽  
M. S. Karbyshev ◽  
A. M. Gaponov ◽  
N. E. Moskaleva ◽  
...  

Aim. To assess the concentrations of bacterial and eukaryotic metabolites mainly involved in indole, kynurenine, and serotonin pathways of tryptophan metabolism in a cohort of patients with obesity. Materials and methods. Using high-performance liquid chromatography with mass spectrometric detection, the concentrations of several serum metabolites, such as kynurenine, kynurenic acid, anthranilic acid, xanthurenic acid, quinolinic acid, 5-hydroxyindole-3-acetate, tryptamine, serotonin, indole-3-lactate, indole-3-acetate, indole-3- butyrate, indole-3-carboxaldehyde, indole-3-acrylate, and indole-3-propionate, were analyzed in a cohort of obese patients compared with healthy volunteers.Results. It was found that serum levels of tryptophan metabolites of microbial and eukaryotic origin were significantly increased in obese patients. Therefore, the concentration of kynurenine in the blood serum in obese patients was 2,413 ± 855 nmol / l, while in healthy volunteers of the same age group, the level of kynurenine in the blood serum was 2,122 ± 863 nmol / l. In obese patients, two acids formed due to kynurenine metabolism; the concentrations of kynurenic and quinolinic acids were increased in the blood serum. The concentration of kynurenic acid in the blood serum in obese patients was 21.1 ± 9.26 nmol / l, and in healthy patients, it was 16.8 ± 8.37 nmol / l. At the same time, the level of quinolinic acid in the blood serum in obese patients was 73.1 ± 54.4 nmol / l and in healthy volunteers – 56.8 ± 34.1 nmol / l. Normally, the level of quinolinic acid is 3.4 times higher than the concentration of kynurenic acid, and in case of obesity, there is a comparable increase in these acids in the blood serum.From indole derivatives, mainly of microbial origin, the concentrations of indole-3-lactate, indole-3-butyrate, and indole-3-acetate were significantly increased in the blood serum of obese patients. In obese patients, the serum concentration of 5-hydroxyindole-3-acetate was elevated to 74.6 ± 75.8 nmol / l (in healthy volunteers – 59.4 ± 36.6 nmol / l); indole-3-lactate – to 523 ± 251 nmol / l (in healthy volunteers – 433 ± 208 nmol / l); indole-3-acetate – to 1,633 ± 1,166 nmol / l (in healthy volunteers – 1,186 ± 826 nmol / l); and indole-3-butyrate – to 4.61 ± 3.31 nmol / l (in healthy volunteers – 3.85 ± 2.51 nmol / l).Conclusion. In case of obesity, the utilization of tryptophan was intensified by both the microbiota population and the macroorganism. It was found that obese patients had higher concentrations of kynurenine, quinolinic and kynurenic acids, indole-3-acetate, indole-3-lactate, indole-3-butyrate, and 5-hydroxyindole-3-acetate. Apparently, against the background of increased production of proinflammatory cytokines by adipocytes in obese patients, the “kynurenine switch” was activated which contributed to subsequent overproduction of tryptophan metabolites involved in the immune function of the macroorganism. 


2021 ◽  
Vol 5 (2) ◽  
pp. 143-149
Author(s):  
V. M. Sheibak ◽  
◽  
A. Yu. Pauliukavets ◽  

Background. Tryptophan is an essential amino acid found mainly in protein foods and its availability is highly dependent on a diet. A significant part of tryptophan is metabolized in the gastrointestinal tract by the intestinal microbiota, producing a number of biologically active molecules, including aryl hydrocarbon receptor ligands, kynurenines, and serotonin (5-hydroxytryptamine). Objective. To analyze scientific studies confirming the key role of tryptophan microbial catabolites on the function of a macroorganism. Material and methods. The analysis of 47 English-language literature sources containing information on the effects of tryptophan metabolites on the mammalian organism was carried out. Results. It has been established that tryptophan metabolism plays a central role both in a normal macroorganism and in pathological conditions, it being directly or indirectly controlled by the intestinal microbiota. Conclusions. Thus, tryptophan metabolism is an important therapeutic target, underutilized in the treatment of a number of chronic neurological pathologies and immunocompetent conditions. An important factor is the use of nutraceuticals and probiotics by microorganisms that modulate the metabolism of tryptophan in the intestine and stimulate the synthesis of specific metabolites.


Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Yao Lu ◽  
Jasmine Chong ◽  
Shiqian Shen ◽  
Joey-Bahige Chammas ◽  
Lorraine Chalifour ◽  
...  

Crosstalk between the gut microbiome and the host plays an important role in animal development and health. Small compounds are key mediators in this host–gut microbiome dialogue. For instance, tryptophan metabolites, generated by biotransformation of tryptophan through complex host–microbiome co-metabolism can trigger immune, metabolic, and neuronal effects at local and distant sites. However, the origin of tryptophan metabolites and the underlying tryptophan metabolic pathway(s) are not well characterized in the current literature. A large number of the microbial contributors of tryptophan metabolism remain unknown, and there is a growing interest in predicting tryptophan metabolites for a given microbiome. Here, we introduce TrpNet, a comprehensive database and analytics platform dedicated to tryptophan metabolism within the context of host (human and mouse) and gut microbiome interactions. TrpNet contains data on tryptophan metabolism involving 130 reactions, 108 metabolites and 91 enzymes across 1246 human gut bacterial species and 88 mouse gut bacterial species. Users can browse, search, and highlight the tryptophan metabolic pathway, as well as predict tryptophan metabolites on the basis of a given taxonomy profile using a Bayesian logistic regression model. We validated our approach using two gut microbiome metabolomics studies and demonstrated that TrpNet was able to better predict alterations in in indole derivatives compared to other established methods.


Author(s):  
Katarzyna Kowalik ◽  
Natalia Miękus ◽  
Tomasz Bączek

Background: L-tryptophan is an essential amino acid, necessary for the human body to function. Its degradation occurs through two metabolic pathways. Approximately 95% of the L-tryptophan available in the body is converted via the kynurenine pathway, while the remainder is degraded via the serotonin pathway. Properly maintained balance between the concentrations of individual small molecular metabolites is extremely important to maintain homeostasis in the human body, and its disruption could lead to the development of numerous neurological, neurodegenerative, neoplastic, as well as cardiovascular diseases. Recent reports suggested that by controlling the levels of selected L-tryptophan metabolites (potential biomarkers), it is possible to diagnose numerous diseases, monitor their course and assess patient prognosis. Objective: The aim of this paper is to review the currently important clinical applications of selected biomarkers from the L-tryptophan metabolism pathways that would be helpful in early diagnosis, monitoring the course and treatment of serious diseases of affluence, which ultimately could improve the patients’ quality of life, as well as support targeted therapy of the aforementioned diseases. Conclusion: Since the biochemical biomarkers determination in body fluids presents the ideal minimally invasive tool in the patents’ diagnosis and prognostication, the topic is up-to-date and, importantly, emphasized the current trends and perspectives of application of analysis of selected L-tryptophan metabolites named kynurenine and serotonin-derived small compounds in the routine medical procedures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhipeng Zheng ◽  
Baohong Wang

Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1724
Author(s):  
Manuela Simonato ◽  
Stefano Dall’Acqua ◽  
Caterina Zilli ◽  
Stefania Sut ◽  
Romano Tenconi ◽  
...  

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) differ for triggers, mode of start, associated symptoms, evolution, and biochemical traits. Therefore, serious attempts are underway to partition them into subgroups useful for a personalized medicine approach to the disease. Here, we investigated clinical and biochemical traits in 40 ME/CFS patients and 40 sex- and age-matched healthy controls. Particularly, we analyzed serum levels of some cytokines, Fatty Acid Binding Protein 2 (FAPB-2), tryptophan, and some of its metabolites via serotonin and kynurenine. ME/CFS patients were heterogeneous for genetic background, trigger, start mode, symptoms, and evolution. ME/CFS patients had higher levels of IL-17A (p = 0.018), FABP-2 (p = 0.002), and 3-hydroxykynurenine (p = 0.037) and lower levels of kynurenine (p = 0.012) and serotonin (p = 0.045) than controls. Changes in kynurenine and 3-hydroxykynurenine were associated with increased kynurenic acid/kynurenine and 3-hydroxykynurenine/kynurenine ratios, indirect measures of kynurenine aminotransferases and kynurenine 3-monooxygenase enzymatic activities, respectively. No correlation was found among cytokines, FABP-2, and tryptophan metabolites, suggesting that inflammation, anomalies of the intestinal barrier, and changes of tryptophan metabolism may be independently associated with the pathogenesis of the disease. Interestingly, patients with the start of the disease after infection showed lower levels of kynurenine (p = 0.034) than those not starting after an infection. Changes in tryptophan metabolites and increased IL-17A levels in ME/CFS could both be compatible with anomalies in the sphere of energy metabolism. Overall, clinical traits together with serum biomarkers related to inflammation, intestine function, and tryptophan metabolism deserve to be further considered for the development of personalized medicine strategies for ME/CFS.


Author(s):  
Nkiruka V. Arinze ◽  
Wenqing Yin ◽  
Saran Lotfollahzadeh ◽  
Marc Arthur Napoleon ◽  
Sean Richards ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2528
Author(s):  
Rafael Ballan ◽  
Susana Marta Isay Saad

The increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide has become a burden to healthcare systems. In 2019, around 463 million adults were living with diabetes mellitus, and T2DM accounted for 90 to 95% of cases. The relationship between the gut microbiota and T2DM has been explored with the advent of metagenomic techniques. Genome-wide association studies evaluating the microbiota of these individuals have pointed to taxonomic, functional, and microbial metabolite imbalances and represent a potential intervention in T2DM management. Several microbial metabolites and components, such as imidazole propionate, trimethylamine, and lipopolysaccharides, appear to impair insulin signaling, while short-chain fatty acids, secondary bile acids, and tryptophan metabolites may improve it. In addition, the use of probiotics with the aim of transiently restoring the microbial balance or reducing the effects of microbial metabolites that impair insulin sensitivity has been explored. Herein, we critically review the available literature on the changes in the gut microbiota in T2DM together with potential adjuvant therapies that may improve the health status of this population.


Sign in / Sign up

Export Citation Format

Share Document