The crystal and molecular structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, a phosphorus–silicon heterocycle

1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.

1983 ◽  
Vol 61 (9) ◽  
pp. 2062-2067 ◽  
Author(s):  
Stephen W. Liblong ◽  
Richard T. Oakley ◽  
A. Wallace Cordes ◽  
Mark C. Noble

The reaction of norbornadiene with (triphenylphosphoranediyl)aminocyclotrithiatriazene produces the cycloadduct Ph3PN—S3N3•C7H8. The crystal and molecular structure of this compound has been determined by X-ray crystallography. Crystals of Ph3PN—S3N3•C7H8 are monoclinic, space group P21/c, a = 9.757(1), b = 15.114(1), c = 16.535(2) Å, β = 100.73(1)°, V = 2395.7(9) Å3, and Z = 4. The structure was solved by direct methods and refined by Fourier and full-matrix least-squares procedures to give a final R of 0.040 and Rw of 0.058 for 2620 observed reflections. The structure reveals that the S3N3 ring adds to norbornadiene in an exo fashion via two sulphur atoms. The S3N3 ring adopts a chair conformation with the three ligands occupying axial positions on the same side of the ring. The relative rates of this and other cycloadditions involving SN substrates and olefins are discussed in terms of the energies of the interacting frontier orbitals. The results suggest that HOMO(olefin)–LUMO(SN substrate) interactions control the kinetics of these reactions.


1997 ◽  
Vol 75 (5) ◽  
pp. 475-482 ◽  
Author(s):  
Wei Xu ◽  
Alan J. Lough ◽  
Robert H. Morris

New amineruthenium and amineiridium hydride derivatives have been synthesized and characterized with the objective of observing intramolecular [Formula: see text] or [Formula: see text] interactions. These include RuHCl(CO)(L)(PPri3)2 (1a, L = NH2NH2; 1b, L = NH3) and IrCl2(L)(H)(PCy3)2 (2a, L = SC(NH2)2; 2b, L = NH3; 2c, L = NH2NH2; 2d, L = NH2(CH2)3NH2; 2e, L = NH2OH). Instead, weak [Formula: see text] van der Waals contacts have been detected in the solid state by X-ray analysis and in solution by NMR T1 measurements and nOe techniques. Both X-ray crystal structure analysis and minimum T1 measurements indicate that the [Formula: see text] distances in the [Formula: see text] interactions are ca•2.0–2.2 Å. The weak interactions might influence the course of deuteration of these complexes under D2 gas. The crystal and molecular structure of IrCl2(NH3)(H)(PCy3)22a has been determined by X-ray diffraction at 173 K: monoclinic, space group P21/n, a = 14.859(2) Å, b = 18.579(3) Å, c = 18.548(3) Å, β = 97.29(1)°, V = 5079.1(13) Å3, Z = 4, full-matrix least-squares refinement on F2 for 10 953 independent reflections; R[F2 > 4σ(F2)] = 0.0283, wR(F2) = 0.0704. Keywords: ruthenium, iridium, hydride, dihydrogen, complexes, hydrogen bond, NMR, X-ray.


1972 ◽  
Vol 25 (10) ◽  
pp. 2117 ◽  
Author(s):  
MD Brice ◽  
BR Penfold ◽  
WT Robinson

The crystal and molecular structure of 4α-t-butylcyclohexane-1β,2,β-diol, C10H20O2, has been determined by X-ray diffraction methods. The compound crystallizes in the triclinic space group Pi with 4 molecules in a unit cell of dimensions a = 12.268, b = 15.921, c = 6.322�, α = 82.53, β = 114.45, γ = 111.13�. The intensity data were measured by counter methods using Cu Kα radiation; the structure was solved by means of the tangent formula, and was refined using full matrix least-squares techniques to a final R-factor of 0.063 for 1199 reflections. The crystal structure consists of two sets of crystallographically non-equivalent molecules hydrogen-bonded to form discrete chains parallel to the c axis. The cyclohexane rings are in the chair conformation.


1977 ◽  
Vol 30 (5) ◽  
pp. 1007 ◽  
Author(s):  
GR Scollary

A structural analysis of the platinum-silatrane complex, PtCl [Si(OCH2CH2)3N] [PMe2Ph]2, has been carried out by X-ray diffraction. Crystals are monoclinic, space group P21/c, a 6.630(4), b 17.465(6), c 22.297(6) Ǻ, β 97.4(2)�, Z 4. The structure has been refined by a full- matrix least-squares procedure to R 0.048 for 2165 reflections. Basic geometries are square (platinum), tetrahedral (silicon) and trigonal (nitrogen). Within the silatrane ligand, the Si-N non-bonding distance is 2.89(1) Ǻ.


1995 ◽  
Vol 48 (7) ◽  
pp. 1277 ◽  
Author(s):  
EJ Ditzel ◽  
GB Robertson

The structure of mer-trans-(PPri3)2(PH3)H-trans-Cl2IrIII (1) (Pri = isopropyl), the second third-row transition-metal-PH3 complex to be so characterized, has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group C 2/c with a 21.701(2), b 8.735(1), c 15.594(1) Ǻ, β 119.57(1)° and Z 4. Structure refinement by full-matrix least-squares analysis (2811 reflections, 113 parameters) converged with R = 0.016 and Rw = 0.022. Molecules exhibit crystallographically imposed C2 symmetry. The C2 axis passes through the iridium, hydride and PH3 phosphorus atoms, and requires the PH3 hydrogen atoms to be disordered. Important molecular dimensions are Ir-PPri3 2.371(1) Ǻ, Ir-PH3 2.362(1) Ǻ, Ir-Cl 2.374(1) Ǻ and P- Ir -P(trans) 163.21(3)°.


1996 ◽  
Vol 49 (11) ◽  
pp. 1253 ◽  
Author(s):  
EJ Ditzel ◽  
KD Griffiths ◽  
GB Robertson

The structure of mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (4) has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group P21/c, with a 11.607(1), b 21.553(1), c 14.066(1) Ǻ, β 109.04(1)? and Z 4. Structure refinement by full-matrix least-squares analysis (3244 unique reflections, 316 parameters) converged with R 0.034 and Rw 0.041. The PEt2Ph ligands are similarly disposed to their PMe2Ph counterparts in mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (2) but the PPri3 ligands are differently oriented and differently configured. Metal-ligand distances [ Ir -P(1,2,3) 2.333(2), 2.404(2), 2.368(2) Ǻ; Ir-Cl (1,2) 2.388(2), 2.400(2) Ǻ] are all within c. 0.02 Ǻ of those in (2). The P-Ir -P(trans) angle is 155.3(1)°.


1979 ◽  
Vol 57 (23) ◽  
pp. 3157-3159 ◽  
Author(s):  
Doris Margaret Thompson ◽  
Ian David Brindle ◽  
Mary Frances Richardson

The crystal structure of (E)-6-(bromomethylene)-5,6-dihydro-4,4-dimethyl-2-phenyl-4H-1,3,4-oxadiazinium bromide has been determined by single crystal X-ray diffraction methods. The crystals are monoclinic, space group P21/c, with a = 12.002(5), b = 6.414(4), c = 17.881(7) Å, β = 101.42(7)°, and Z = 4 formula units of C12H14N2OBr2. The structure was refined by full-matrix least-squares analysis to a conventional R-factor of 0.0491 for 1019 observed reflections. The oxadiazinium ring is in the half-chair form, with the methylene group out of the plane defined by the other five atoms. The C—O bond distances in the ring are somewhat shorter than the distance observed for a carbon–oxygen single bond, suggesting that some delocalization of electron density occurs over part of the ring.


1983 ◽  
Vol 61 (6) ◽  
pp. 1185-1188 ◽  
Author(s):  
Hans Koenig ◽  
Richard T. Oakley ◽  
A. Wallace Cordes ◽  
Mark C. Noble

The reaction of tetrasulphur dinitride with norbornadiene produces the 1:1 adduct S4N2•C7H8; X-ray crystallographic analysis of this compound reveals that olefin addition cleaves one of the sulphur–sulphur bonds of S4N2, yielding a novel eight-membered C2S4N2 ring. Crystals of S4N2•C7H8 are monoclinic, space group P21/c, a = 6.127(1), b = 17.369(1), c = 9.580(1) Å, β = 106.74(1)°, V = 1003.8(5) Å3Z = 4. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.039. The S—S—N—S—N—S fragment of the C2S4N2 ring is planar to within 0.15 Å. The S—C—C—S unit is folded out of this plane to produce a dihedral angle of 74.5°.


1975 ◽  
Vol 53 (16) ◽  
pp. 2413-2418 ◽  
Author(s):  
Harry P. Calhoun ◽  
Richard T. Oakley ◽  
Norman L. Paddock ◽  
James Trotter

Octamethylcyclotetraphosphazene is deprotonated by methyllithium to form carbanions, which react with methyl iodide to give ethyl derivatives N4P4Me8−nEtn, [Formula: see text] the structure of the dihydrochloride of the diethyl derivative, N4P4Me6Et2•2HCl has been determined. Its crystals are monoclinic, a = 9.928(5), b = 15.482(6), c = 6.329(2) Å, β = 103.29(2)°, space group P21/n. The structure was determined from diffractometer X-ray data and refined by full-matrix least squares methods to R 0.079 for 715 observed reflections. The N4P4Me6Et2H22+ ion lies on a crystallographic center of symmetry and the eight-membered phosphazene ring has the "chair" conformation. There are two significantly different P—N bond lengths, 1.665(6) and 1.572(7) Å, and two significantly different P—N—P angles, 126.7(6) and 139.8(6)°. The mean P—C bond length is 1.801(7) Å, and the mean N—P—N and C—P—C angles are 112.2(4) and 107.6° respectively. Bond lengths and angles in the phosphazene ring show the characteristic effects of π-electron localization found in other protonated phosphazene derivatives. The two ethyl groups are in tran-antipodal positions, corresponding to the least intramolecular electrostatic repulsion in the carbanion.


1974 ◽  
Vol 52 (14) ◽  
pp. 2531-2541 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel

Crystals of 4,4-dimethyl-2,2-diphenyl-1,3-dioxa-4-azonia-2-boranatacyclopentane are orthorhombic, a = 17.043(3), b = 6.289(1), c = 13.024(2) Å, Z = 4, space group Pna21. The structure was determined by direct methods, and was refined by full-matrix least-squares procedures to R = 0.071 for 1100 reflections with I ≥ 3σ(I). Bond angles in the five-membered ring, which has a distorted half-chair conformation, range from 101.5(4) for OBO to 107.1(4)° for NOB. Bond lengths are: mean B—C, 1.632(8), B—O, 1.506(7) and 1.556(8), N—O, 1.409(5), C—O, 1.378(9), C—N, 1.467–1.509(7–10), mean C—C(aromatic), 1.395(25) Å. The structure consists of discrete molecules separated by normal van der Waals distances.


Sign in / Sign up

Export Citation Format

Share Document