Reactions of "cyclen-" and "cyclam-phosphorane" with [Pt2Cl4(PEt3)2]. Monodentate and bidentate complexes and the crystal and molecular structure of [PtCl(PEt3)(cyclamPH)]Cl•CH2Cl2

1989 ◽  
Vol 67 (1) ◽  
pp. 48-53 ◽  
Author(s):  
David Eric Berry ◽  
Jane Browning ◽  
Gordon William Bushnell ◽  
Keith Roger Dixon ◽  
Alan Pidcock

Reaction of "cyclamphosphorane" (cyclamPH) with [Pt2Cl4(PEt3)2] yields [PtCl(PEt3)(cyclamPH)]Cl. The complex crystallizes as a dichloromethane solvate in the monoclinic space group P21/n, with a = 13.877(3), b = 23.231(7), c = 8.295(2)Å, β = 91.86(4)°, and an X-ray diffraction study shows square planar platinum coordination in which the labile proton of cyclamPH has transferred from phosphorus to nitrogen and the ligand is attached via simple [Formula: see text] chelation. The phosphorus is trans to chlorine in the platinum coordination plane.The corresponding product, trans-[PtCl2(PEt3)(cyclenPH2)]Cl, derived from reaction of "cyclenphosphorane" (cyclenPH) with [Pt2Cl4(PEt3)2], is shown by NMR studies to have a quite different structure in which the ligand is protonated at two nitrogen sites but not at phosphorus. The phosphorus is pentacoordinate with four attachments to nitrogen atoms and one to platinum. The two chlorine atoms are mutually trans in the platinum coordination plane. Keywords: crystal structure, cyclenphosphorane reaction, cyclamphosphorane reaction, X-ray diffraction.

1986 ◽  
Vol 51 (11) ◽  
pp. 2521-2527 ◽  
Author(s):  
Jan Lokaj ◽  
Eleonóra Kellö ◽  
Viktor Kettmann ◽  
Viktor Vrábel ◽  
Vladimír Rattay

The crystal and molecular structure of SnBu2(pmdtc)2 has been solved by X-ray diffraction methods and refined by a block-diagonal least-squares procedure to R = 0.083 for 895 observed reflections. Monoclinic, space group C2, a = 19.893(6), b = 7.773(8), c = 12.947(8) . 10-10 m, β = 129.07(5)°, Z = 2, C20H38N2S4Sn. Measured and calculated densities are Dm = 1.38(2), Dc = 1.36 Mg m-3. Sn atom, placed on the twofold axes, is coordinated with four S atoms in the distances Sn-S 2.966(6) and 2.476(3) . 10-10 m. Coordination polyhedron is a strongly distorted octahedron. Ligand S2CN is planar.


2017 ◽  
Vol 73 (8) ◽  
pp. 1148-1150
Author(s):  
Shravan Kumar Ellandula ◽  
Cosmos Opoku Amoako ◽  
Joel T. Mague ◽  
Perumalreddy Chandrasekaran

The unsymmetrical α-diimine ligand N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline, [ArN=C(Me)—(Et)C=NAr] [Ar = 2,6-(iPr)2C6H3], (I), and the corresponding palladium complex, cis-(N-{2-[2,6-bis(propan-2-yl)phenylimino]pentan-3-ylidene}-2,6-bis(propan-2-yl)aniline)dichloridopalladium(II) 1,2-dichloroethane monosolvate, [PdCl2(C29H42N2)]·C2H4Cl2 or cis[PdCl2{I}], (II), have been synthesized and characterized. The crystal and molecular structure of the palladium(II) complex have been established by single-crystal X-ray diffraction. The compound crystallized along with a 1,2-dichloroethane solvent of crystallization. The coordination plane of the PdII atom shows a slight tetrahedral distortion from square-planar, as indicated by the dihedral angle between the PdCl2 and PdN2 planes of 4.19 (8)°. The chelate ring is folded along the N...N vector by 7.1 (1)°.


1989 ◽  
Vol 44 (1) ◽  
pp. 5-8
Author(s):  
Michel Mégnamisi-Bélombé

Abstract trans-Dichloro(ethanedial-dioximato)(ethanediaI-dioxime)rhodium (III), RhCl2(GH)(GH2), has been synthesized and its structure determined by single crystal X-ray diffraction at room temperature. C4H7Cl2N4O4Rh, Mr = 348.94. monoclinic space group P21/ɑ; a = 10.543(3), b = 8.363(2), c = 11.512(3)Å ; β = 92.79(2)°; V = 1024Å3; Z = 4; Dc = 2.26 Mg m-3. Final Rw = 0.075 for 2035 reflections and 139 parameters. The coordination geometry around Rh is a dis­torted (4+2) octahedron, with four chelating N atoms lying in the equatorial plane and the two Cl atoms in the apical positions. The H atoms of the oxime groups are involved in relatively weak intramolecular O-H-O bridgings, as well as in very strong intermolecular bridgings which extend throughout the crystal structure and propagate nearly parallel to the [101] crystallographic direction.


1987 ◽  
Vol 65 (6) ◽  
pp. 1322-1326 ◽  
Author(s):  
Hong Wang ◽  
Richard J. Barton ◽  
Beverly E. Robertson ◽  
John A. Weil ◽  
Keith C. Brown

The crystal structure of 9-(2,4,6-trinitroanilino)-carbazole, C18H11N5O6, has been determined by X-ray diffraction. Crystals are monoclinic, space group P21/c, a = 14.686(11), b = 24.601(12), c = 10.047(5) Å, β = 107.76(5)° at 292 K, with Z = 8. The two nitrogen atoms in the central fragment have a staggered conformation with an N—N distance of 1.381(4) Å, which is considerably shorter than N—N distances in related N-picrylhydrazine molecules. The picryl moiety has a geometry similar to that of related N-picrylhydrazine molecules. The title compound contains an [Formula: see text] intramolecular bond to one of the ortho nitro groups on the picryl ring. The carbazole plane of one molecule and the picryl plane of a neighboring molecule overlap to form an infinite linear chain of the form … DhA:DhA … where D represents the carbazole donor, h the linear chain linkage within the molecule, and A represents the picryl acceptor of one molecule. The two interplanar distances between D of one molecule and A of an adjacent molecule are 3.28(13) and 3.34(13) Å, indicating a strong π-molecular interaction.


2011 ◽  
Vol 415-417 ◽  
pp. 1443-1446
Author(s):  
Ke Liang Zhang ◽  
Ning Sheng Zhang ◽  
Chen Tun Qu

The title compound has been prepared from the reaction of fluorescein and 1-bromobutane in the presence of potassium carbonate. Its crystal and molecular structure is determined by single crystal X-ray diffraction. Its crystal is monoclinic space group P2(1)/n with lattice parameters: a = 8.0460(19) Å, b = 13.198(3) Å, c = 22.208(5) Å, α = 90.00º, β = 94.140(3)º, γ = 90.00º, V= 2352.1(9)Å3, Density (calculated) 1.228 mg /m3, μ(mm-1) = 0.08, absorption coefficient = 0.082m−1, F(000) 1034, Z = 4. In the crystal structure, intermolecular O-H hydrogen bands are responsible for the formation of a 3-dimensional net-work. The UV-vis absorption and fluorescence spectra of both dibutyl ester-ether fluorescein was studied.


1983 ◽  
Vol 36 (7) ◽  
pp. 1371 ◽  
Author(s):  
GA Williams ◽  
JR Statham ◽  
AH White

The crystal structure of dipyrrolidylthiuram disulfide has been determined by single-crystal X-ray diffraction techniques at 295 K. Crystals are monoclinic, space group C2/c, unit cell a 13.835(3), b 10.422(2), c 9.427(3) �, β 97.08(2)� and Z 4. Automatic diffractometry has provided significant Bragg intensities for 1402 independent reflections, and the structure has been refined by least-squares methods to R 0.037. The structure consists of discrete C4H8NC(S)S2C(S)NC4H8 molecules. Half of each molecule is crystallographically unique with distances S-S 2.002(1), and C-S 1.804(2) and 1.645(2) �. The dihedral angle between planar C2NC(S)S portions is 87.9�. The relevance of the derived structural parameters to the question of why the tris(pyrrolidine-1-carbodithioato)iron(III) complex is, uniquely, high spin is discussed.


1979 ◽  
Vol 57 (1) ◽  
pp. 57-61 ◽  
Author(s):  
R. Melanson ◽  
F. D. Rochon

The crystal structure of [Pt(diethylenetriamine)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 12.486(6), b = 13.444(7), c = 14.678(11) Å, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.050 and a weighted Rw = 0.045.The coordination around the platinum atom is square planar. Guanosine is bonded to platinum through N(7). The purine planar ring makes an angle of 62.7° with the platinum coordination plane. The structure is stabilized by hydrogen bonding.


1979 ◽  
Vol 34 (3) ◽  
pp. 434-436 ◽  
Author(s):  
A. Müller ◽  
S. Pohl ◽  
M. Dartmann ◽  
J. P. Cohen ◽  
J. M. Bennett ◽  
...  

Abstract The novel tri-nuclear metal-sulfur cluster [Mo3S(S2)6]2- can be obtained as its ammonium salt by the reaction of a Moiv containing aqueous solutions with polysulfide. Its crystal and molecular structure has been determined by a single crystal X-ray study. The crystals are monoclinic (space group Cm, with a = 11.577(6) Å, b = 16.448(7) Å, c = 5.716(2) Å, β = 117.30(3)°, V = 967.2 Å3 , Z = 2, dexptl. = 2.54(2) g/cm3 , dcal = 2.54 g/cm3). The structure consists of isolated [Mo3S(S2)6]2- units, with three Mo atoms at the vertices of a triangle. There are bridging as well as terminal S22--ligands lying above and below the Mo3-plane (bond distances: Mo-Mo = 2.722 Å, Mo-S(terminal) = 2.435, Mo-S(bridging) = 2.452, Mo3-S = 2.353(4) Å and S-S = 2.04 Å (mean values)).


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


1975 ◽  
Vol 53 (18) ◽  
pp. 2707-2713 ◽  
Author(s):  
Debbie Allen ◽  
Colin James Lyne Lock ◽  
Graham Turner ◽  
John Powell

The crystal and molecular structures of pentane-2,4-dionato-(2,3,5,6-tetrahapto-2,3-dicarbomethoxo[2.2.1]bicycloheptadienerhodium(I), Rh(C5H7O2)(C7H6(CO2CH3)2), have been measured by single crystal X-ray diffraction. The orange crystals are monoclinic, space group P21/c, Z = 4, a = 9.245(4), b = 9.003(4), c = 21.680(15) Å, β = 113.41(5)°. The calculated and observed densities are 1.645 and 1.642(5) respectively. Intensity data were collected on a Syntex [Formula: see text] diffractometer and a full matrix least squares refinement on 3010 observed reflections leads to a conventional R = 0.0660. The structure can be considered as a roughly square planar arrangement of ligands around the rhodium atom composed of two β-ketoenolate oxygen atoms (Rh—O, 2.037(5) and 2.025(5) Å ) and the centers of the two ethylenic groups. The Rh—C distances for the olefin group attached to the two carbomethoxo groups, 2.117(8), 2.108(8) Å, appear to be slightly larger than those for the other olefinic group, 2.087(7), 2.082(6), and the corresponding C=C distances of 1.375(10) and 1.410(9) Å are different at the 95% confidence level.


Sign in / Sign up

Export Citation Format

Share Document