Crystal and Molecular Structure of 2,5-Bis(2′-hydroxyethylamino)-1,4-benzoquinone

1975 ◽  
Vol 53 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of 2,5-bis(2′-hydroxyethylamino)-1,4-benzoquinone are monoclinic, a = 5.020(1), b = 19.238(3), c = 5.214(1) Å, β = 96.15(3)°, Z = 2, space group P21/n. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.045 for 646 reflections with I ≥ 3σ(I). The benzoquinone ring in the centrosymmetric molecule is slightly, but significantly, nonplanar. Bond distances in the compound (C—C, 1.247 (2) and 1.410 (3), C—N, 1.332 (3) and 1.457 (3), C—C, 1.384–1.514 (3), N—H, 0.89 (3), O—H, 1.07 (5), and C—H, 0.95–1.09 (3) Å) are similar to those in related compounds. The structure features an extensive network of N—H … O (N … O = 2.639 (3) and 3.033 (2) Å) and O—H … O(O … O = 2.757 (3) Å ) hydrogen bonds.


1976 ◽  
Vol 54 (20) ◽  
pp. 3130-3141 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of B,B-bis(p-tolyl)boroxazolidine, 1c, are trigonal, a = 25.1028(9), c = 12.4184(7) Å, Z = 18, space group [Formula: see text]. And crystals of B,B-diphenylboroxazolidine, 1a, are orthorhombic, a = 17.6420(4), b = 14.2527(3), c = 10.205(1) Å, Z = 8, space group Pbca. Both structures were solved by direct methods and were refined by full-matrix least-squares procedures to final R values of 0.057 and 0.040 for 2230 and 1828 reflections with I ≥ 3σ(I) respectively. Both molecules have structures similar to related compounds and feature intermolecular N—H … O hydrogen bonds (N … O = 2.982(2) for 1c and 2.896(2) Å for 1a). Bond lengths are: for 1c; O—C, 1.413(3), O—B, 1.478(3), N—C, 1.488(3), N—B, 1.657(3), C(sp3)—C(sp3), 1.501(4), B—C, 1.616(3) and 1.623(3), mean C—C(ar), 1.395, N—H, 0.93(2) and 0.94(2), mean C(sp3)—H, 1.00, and mean C(ar)—H, 1.00 Å; for 1a; O—C, 1.409(2), O—B, 1.476(2), N—C, 1.489(2), N—B, 1.655(2), C(sp3)—C(sp3), 1.507(3), B—C, 1.613(2) and 1.620(2), mean C—C(ar), 1.391, N—H, 0.93(2) and 0.92(2), mean C(sp3)—H, 1.00, and mean C(ar)—H, 0.98 Å. A statistical analysis of the phenyl C—C distances in compounds 1a, 1b, and 1c has provided an example of statistically significant substituent-induced bond length variation in the phenyl rings.



1977 ◽  
Vol 55 (6) ◽  
pp. 958-965 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of L-prolinatodiphenylboron are monoclinic, a = 5.9427(5), b = 14.4633(7), c = 8.9654(4) Å, β = 98.423(8)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.037 and Rw of 0.053 for 1477 reflections with I ≥ 3σ(I). The proline ring exhibits conformational disorder. The crystal structure consists of discrete molecules linked by N—H … O hydrogen bonds (N … O = 2.893(3) Å) along the short a axis. Intramolecular N—B coordination occurs to form a system of two fused five-membered rings. Bond lengths (corrected for libration) are: N—B, 1.630(3), O—B, 1.529(3), O—C, 1.219(3) and 1.300(3), N—C, 1.506(3) and 1.507(3), C(sp3)–C(sp3), 1.525(4), C(sp2)—C(sp3), 1.517(3), and mean C—C(phenyl), 1.394 Å.



1975 ◽  
Vol 53 (10) ◽  
pp. 1393-1401 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of B-phenyl-dictychboroxazolidine are monoclinic, a = 8.4977(4), b = 9.0617(5), c = 7.0105(3) Å, β = 111.627(3)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.040 for 967 reflections with I ≥ 3σ(I). The bond lengths involving nonhydrogen atoms have been corrected for thermal motion. Bond lengths are: B—O, 1.460(3) and 1.474(3), B—N, 1.666(3), B—C, 1.613(3), C—O, 1.411(3) and 1.419(3), C—N, 1.485(3) and 1.486(3), C(sp3)—C(sp3), 1.514(4) and 1.524(4), C—C(ar), 1.384–1.400(4–6), mean C—H, 0.98(4), and N—H, 0.87(5) Å. The crystal structure consists of discrete molecules of B-phenyl-diptychboroxazolidine each linked to two others by N—H … O hydrogen bonds (O … N = 2.914(3) Å) to form continuous spirals along b.



1975 ◽  
Vol 53 (5) ◽  
pp. 765-776 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of (±)-7,7-(2′,2′-dimethyl)pentamethylene-1-methyl-norbornane-2-oxime are monoclinic, a = 9.202(2), b = 12.852(3), c = 12.698(3) Å, β = 110.83(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.048 for 1538 reflections with I ≥ 3σ(I). The crystal structure consists of pairs of molecules linked by N … H—O hydrogen bonds (N … O = 2.821(3) Å ) to form centrosymmetric dimers. Bond distances are as follows: C—N = 1.266(3), N—O = 1.426(3), mean C(sp3)—C(sp3) = 1.540, and mean C(sp3)—C(sp3) = 1.511 Å.



1989 ◽  
Vol 67 (11) ◽  
pp. 1959-1963 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Steven J. Rettig ◽  
James Trotter

The reaction of N,N′-dihydroxy-N,N′-dimethylmethanediamine with phenylboronic acid leads to the product 1,7-dimethyl-3,5-diphenyl-2,4,6-trioxa-7-aza-1-azonia-3-bora-5-boratabicyclo[3.3.0]octane rather than the expected product 1,5-dimethyl-3-phenyl-1,5-diaza-2,4-dioxa-3-boracyclohexane. The structure of N,N′-dihydroxy-N,N′-dimethylmethanediamine has been determined and is discussed in terms of its reaction with PhB(OH)2. Crystals of N,N′-dihydroxy-N,N′-dimethylmethanediamine are tetragonal, a = 8.5346(3), c = 8.4178(7) Å, Z = 4, space group P421c. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.036 and Rw of 0.038 for 333 reflections with I ≥ 3σ(I). The structure consists of hydrogen-bonded dimers having exact [Formula: see text] symmetry. Keywords: N,N′-dihydroxy-N,N′-dimethylmethanediamine, crystal structure.



1977 ◽  
Vol 55 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of difluoroboron N-methylacethydroxamate are monoclinic, a = 5.097(1), b = 10.653(2), c = 11.520(2) Å, β = 103.57(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.056 and Rw of 0.077 for 988 reflections with I ≥ 3σ(I). The structure features a planar five-membered BO2CN ring. Bond lengths (corrected for libration) are: B—F, 1.374(3) and 1.381(3), O—B, 1.496(3) and 1.497(3), O—N, 1.349(2), O—C, 1.346(2), C—N, 1.298(3) and 1.458(3), and C—C, 1.468(3) Å.



1994 ◽  
Vol 72 (4) ◽  
pp. 1154-1161 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

Three 2-(hydroxyamino)alkanols have been reacted with sterically hindered arylboronic acids, ArB(OH)2. When Ar = o-tolyl, 1:2 condensates having bicyclic structures are formed but when Ar = mesityl (2,4,6-(CH3)3C6H2), 1:1 condensates having six-membered cycloboronate structures result. These 1:1 condensates represent the first examples of N-unsubstituted 1,3-dioxa-4-aza-2-boracyclohexane derivatives. An X-ray analysis of one example provides unambiguous proof of the structure. Crystals of 2-mesityl-6,6-pentamethylene-1,3-dioxa-4-aza-2-boracyclohexane, 3c, are monoclinic, a = 11.076(9), b = 23.94(2), c = 13.414(9) Å, β = 109.40(5)°, Z = 8, space group P21/n. The structure was solved by direct methods and refined by full-matrix least-squares procedures to R = 0.051 and Rw = 0.058 for 2037 reflections with I ≥ 3σ(F2).



1978 ◽  
Vol 56 (12) ◽  
pp. 1676-1680 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of diphenylboron N-methylacethydroxamate are orthorhombic, a = 12.5478(8), b = 7.8735(3), c = 13.6809(5) Å, Z = 4, space group Pnam. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.037 and Rw = 0.054 for 1265 reflections with I ≥ 3σ(I). The molecule features a five-membered BO2CN ring which lies in the crystallographic mirror plane. The carbon and nitrogen atoms of the heterocyclic ring are positionally disordered. Mean bond lengths (corrected for libration) are: O—B, 1.550(2), B—C, 1.609(2), O—C/N, 1.340(3), C—N, 1.300(2), C/N—CH, 1.470(2), and C—C(phenyl), 1.394(8) Å.



1977 ◽  
Vol 55 (13) ◽  
pp. 2530-2533 ◽  
Author(s):  
Richard T. Oakley ◽  
Norman L. Paddock ◽  
Steven J. Rettig ◽  
James Trotter

Crystals of hexadecamethylcyclooctaphosphazene are tetragonal, a = 13.637(1), c = 8.215(1) Å, Z = 2, space group P4/n. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.033 and Rw of 0.032 for 1306 reflections with I ≥ 4σ(I) The molecule has crystallographic fourfold (C4) symmetry with weighted mean bond lengths P—N, 1.590(13), P—C, 1.811(2), and C—H, 0.95(2) Å (those not involving hydrogen have been corrected for libration, rms deviations from the mean are given in parentheses). Angles in the 16-membered ring are 119.2(1) and 115.1(1)° at P and 131.5(1) and 148.2(1)° at N.



1983 ◽  
Vol 61 (6) ◽  
pp. 1185-1188 ◽  
Author(s):  
Hans Koenig ◽  
Richard T. Oakley ◽  
A. Wallace Cordes ◽  
Mark C. Noble

The reaction of tetrasulphur dinitride with norbornadiene produces the 1:1 adduct S4N2•C7H8; X-ray crystallographic analysis of this compound reveals that olefin addition cleaves one of the sulphur–sulphur bonds of S4N2, yielding a novel eight-membered C2S4N2 ring. Crystals of S4N2•C7H8 are monoclinic, space group P21/c, a = 6.127(1), b = 17.369(1), c = 9.580(1) Å, β = 106.74(1)°, V = 1003.8(5) Å3Z = 4. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.039. The S—S—N—S—N—S fragment of the C2S4N2 ring is planar to within 0.15 Å. The S—C—C—S unit is folded out of this plane to produce a dihedral angle of 74.5°.



Sign in / Sign up

Export Citation Format

Share Document