Reaction of N,N′-dihydroxy-.N,N′-dimethylmethanediamine with phenylboronic acid and the crystal and molecular structure of N,N′-dihydroxy-N,N′-dimethylmethanediamine

1989 ◽  
Vol 67 (11) ◽  
pp. 1959-1963 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Steven J. Rettig ◽  
James Trotter

The reaction of N,N′-dihydroxy-N,N′-dimethylmethanediamine with phenylboronic acid leads to the product 1,7-dimethyl-3,5-diphenyl-2,4,6-trioxa-7-aza-1-azonia-3-bora-5-boratabicyclo[3.3.0]octane rather than the expected product 1,5-dimethyl-3-phenyl-1,5-diaza-2,4-dioxa-3-boracyclohexane. The structure of N,N′-dihydroxy-N,N′-dimethylmethanediamine has been determined and is discussed in terms of its reaction with PhB(OH)2. Crystals of N,N′-dihydroxy-N,N′-dimethylmethanediamine are tetragonal, a = 8.5346(3), c = 8.4178(7) Å, Z = 4, space group P421c. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.036 and Rw of 0.038 for 333 reflections with I ≥ 3σ(I). The structure consists of hydrogen-bonded dimers having exact [Formula: see text] symmetry. Keywords: N,N′-dihydroxy-N,N′-dimethylmethanediamine, crystal structure.


1977 ◽  
Vol 55 (6) ◽  
pp. 958-965 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of L-prolinatodiphenylboron are monoclinic, a = 5.9427(5), b = 14.4633(7), c = 8.9654(4) Å, β = 98.423(8)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.037 and Rw of 0.053 for 1477 reflections with I ≥ 3σ(I). The proline ring exhibits conformational disorder. The crystal structure consists of discrete molecules linked by N—H … O hydrogen bonds (N … O = 2.893(3) Å) along the short a axis. Intramolecular N—B coordination occurs to form a system of two fused five-membered rings. Bond lengths (corrected for libration) are: N—B, 1.630(3), O—B, 1.529(3), O—C, 1.219(3) and 1.300(3), N—C, 1.506(3) and 1.507(3), C(sp3)–C(sp3), 1.525(4), C(sp2)—C(sp3), 1.517(3), and mean C—C(phenyl), 1.394 Å.



1975 ◽  
Vol 53 (10) ◽  
pp. 1393-1401 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of B-phenyl-dictychboroxazolidine are monoclinic, a = 8.4977(4), b = 9.0617(5), c = 7.0105(3) Å, β = 111.627(3)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.040 for 967 reflections with I ≥ 3σ(I). The bond lengths involving nonhydrogen atoms have been corrected for thermal motion. Bond lengths are: B—O, 1.460(3) and 1.474(3), B—N, 1.666(3), B—C, 1.613(3), C—O, 1.411(3) and 1.419(3), C—N, 1.485(3) and 1.486(3), C(sp3)—C(sp3), 1.514(4) and 1.524(4), C—C(ar), 1.384–1.400(4–6), mean C—H, 0.98(4), and N—H, 0.87(5) Å. The crystal structure consists of discrete molecules of B-phenyl-diptychboroxazolidine each linked to two others by N—H … O hydrogen bonds (O … N = 2.914(3) Å) to form continuous spirals along b.



1975 ◽  
Vol 53 (5) ◽  
pp. 765-776 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of (±)-7,7-(2′,2′-dimethyl)pentamethylene-1-methyl-norbornane-2-oxime are monoclinic, a = 9.202(2), b = 12.852(3), c = 12.698(3) Å, β = 110.83(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.048 for 1538 reflections with I ≥ 3σ(I). The crystal structure consists of pairs of molecules linked by N … H—O hydrogen bonds (N … O = 2.821(3) Å ) to form centrosymmetric dimers. Bond distances are as follows: C—N = 1.266(3), N—O = 1.426(3), mean C(sp3)—C(sp3) = 1.540, and mean C(sp3)—C(sp3) = 1.511 Å.



1977 ◽  
Vol 55 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of difluoroboron N-methylacethydroxamate are monoclinic, a = 5.097(1), b = 10.653(2), c = 11.520(2) Å, β = 103.57(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.056 and Rw of 0.077 for 988 reflections with I ≥ 3σ(I). The structure features a planar five-membered BO2CN ring. Bond lengths (corrected for libration) are: B—F, 1.374(3) and 1.381(3), O—B, 1.496(3) and 1.497(3), O—N, 1.349(2), O—C, 1.346(2), C—N, 1.298(3) and 1.458(3), and C—C, 1.468(3) Å.



1975 ◽  
Vol 53 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of 2,5-bis(2′-hydroxyethylamino)-1,4-benzoquinone are monoclinic, a = 5.020(1), b = 19.238(3), c = 5.214(1) Å, β = 96.15(3)°, Z = 2, space group P21/n. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.045 for 646 reflections with I ≥ 3σ(I). The benzoquinone ring in the centrosymmetric molecule is slightly, but significantly, nonplanar. Bond distances in the compound (C—C, 1.247 (2) and 1.410 (3), C—N, 1.332 (3) and 1.457 (3), C—C, 1.384–1.514 (3), N—H, 0.89 (3), O—H, 1.07 (5), and C—H, 0.95–1.09 (3) Å) are similar to those in related compounds. The structure features an extensive network of N—H … O (N … O = 2.639 (3) and 3.033 (2) Å) and O—H … O(O … O = 2.757 (3) Å ) hydrogen bonds.



1994 ◽  
Vol 72 (4) ◽  
pp. 1154-1161 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

Three 2-(hydroxyamino)alkanols have been reacted with sterically hindered arylboronic acids, ArB(OH)2. When Ar = o-tolyl, 1:2 condensates having bicyclic structures are formed but when Ar = mesityl (2,4,6-(CH3)3C6H2), 1:1 condensates having six-membered cycloboronate structures result. These 1:1 condensates represent the first examples of N-unsubstituted 1,3-dioxa-4-aza-2-boracyclohexane derivatives. An X-ray analysis of one example provides unambiguous proof of the structure. Crystals of 2-mesityl-6,6-pentamethylene-1,3-dioxa-4-aza-2-boracyclohexane, 3c, are monoclinic, a = 11.076(9), b = 23.94(2), c = 13.414(9) Å, β = 109.40(5)°, Z = 8, space group P21/n. The structure was solved by direct methods and refined by full-matrix least-squares procedures to R = 0.051 and Rw = 0.058 for 2037 reflections with I ≥ 3σ(F2).



1978 ◽  
Vol 56 (12) ◽  
pp. 1676-1680 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of diphenylboron N-methylacethydroxamate are orthorhombic, a = 12.5478(8), b = 7.8735(3), c = 13.6809(5) Å, Z = 4, space group Pnam. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.037 and Rw = 0.054 for 1265 reflections with I ≥ 3σ(I). The molecule features a five-membered BO2CN ring which lies in the crystallographic mirror plane. The carbon and nitrogen atoms of the heterocyclic ring are positionally disordered. Mean bond lengths (corrected for libration) are: O—B, 1.550(2), B—C, 1.609(2), O—C/N, 1.340(3), C—N, 1.300(2), C/N—CH, 1.470(2), and C—C(phenyl), 1.394(8) Å.



1990 ◽  
Vol 68 (9) ◽  
pp. 1494-1498 ◽  
Author(s):  
Martin K. Ehlert ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
Robert C. Thompson ◽  
James Trotter

Zinc metal reacts with excess 3,5-dimethylpyrazole (Hdmpz) in the presence of O2 to produce materials of composition Zn(dmpz)2(Hdmpz)y. Thermolysis of these materials results in the loss of Hdmpz and the formation of the [Zn(dmpz)2]x polymer. Under appropriate conditions the pure dimer [Zn2(dmpz)4(Hdmpz)2] can be obtained in high yield. Crystals of bis[μ-(3,5-dimethylpyrazolyl-N1,N2)]bis[(3,5-dimethylpyrazolyl)(3,5-dimethylpyrazole)zinc(II)] are orthorhombic, a = 17.009(2), b = 29.239(2), c = 13.590(2) Å, Z = 8, space group Fddd. The structure was solved by heavy atom methods and was refined by full-matrix least-squares procedures to R = 0.037 and Rw = 0.042 for 913 reflections with I ≥ 3σ(I). The structure of [Zn2(dmpz)4(Hdmpz)2] contains nearly planar doubly dmpz bridged Zn2 units capped at each end by strongly hydrogen-bonded [Formula: see text] units. The zinc atoms display pseudotetrahedral coordination geometry with Zn—N = 1.991(3) (bridging) and 2.025(3) Å (terminal), and N—Zn—N = 99.6(2)–113.8(2)°. Keywords: zinc 3,5-dimethylpyrazolate complexes, crystal structure.



1977 ◽  
Vol 55 (13) ◽  
pp. 2530-2533 ◽  
Author(s):  
Richard T. Oakley ◽  
Norman L. Paddock ◽  
Steven J. Rettig ◽  
James Trotter

Crystals of hexadecamethylcyclooctaphosphazene are tetragonal, a = 13.637(1), c = 8.215(1) Å, Z = 2, space group P4/n. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.033 and Rw of 0.032 for 1306 reflections with I ≥ 4σ(I) The molecule has crystallographic fourfold (C4) symmetry with weighted mean bond lengths P—N, 1.590(13), P—C, 1.811(2), and C—H, 0.95(2) Å (those not involving hydrogen have been corrected for libration, rms deviations from the mean are given in parentheses). Angles in the 16-membered ring are 119.2(1) and 115.1(1)° at P and 131.5(1) and 148.2(1)° at N.



1990 ◽  
Vol 68 (10) ◽  
pp. 1791-1796 ◽  
Author(s):  
Henning Amt ◽  
Wolfgang Kliegel ◽  
Steven J. Rettig ◽  
James Trotter

Reaction of N,N′-1,2-ethanediylidenebis(2,2-diethoxyethanamine)- N,N′-dioxide and phenylboronic acid yields the title compound. Crystals of 1,4-bis(2,2-diethoxyethyl)-6,8-diphenyl-5,7,9-trioxa-4-aza-1-azonia-8-bora-6-boratabicyclo[4.3.0]-nonane are triclinic, a = 12.625(2), b = 13.962(2), c = 9.273(1) Å, α = 104.81(1), β = 98.61(1), γ = 106.52(1)°, Z = 2, space group [Formula: see text]. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.058 and Rw = 0.081 for 3677 reflections with I ≥ 3σ(I). The molecule has a bicyclo[4.3.0]nonane structure containing one transannular N—B bond. Important bond lengths are sp3-bomn, N—B = 1.759(3), O—B = 1.435(3) and 1.454(3), C—B = 1.579(4); sp2-boron, O—B = 1.335(3) and 1.404(3), C—B = 1.557(4) Å. The (sp3)B—C(phenyl) bond is the shortest yet reported for this type of compound.Keywords: crystal structure, boron compound, organoboron compound.



Sign in / Sign up

Export Citation Format

Share Document