Crystal and Molecular Structure of mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII

1996 ◽  
Vol 49 (11) ◽  
pp. 1253 ◽  
Author(s):  
EJ Ditzel ◽  
KD Griffiths ◽  
GB Robertson

The structure of mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (4) has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group P21/c, with a 11.607(1), b 21.553(1), c 14.066(1) Ǻ, β 109.04(1)? and Z 4. Structure refinement by full-matrix least-squares analysis (3244 unique reflections, 316 parameters) converged with R 0.034 and Rw 0.041. The PEt2Ph ligands are similarly disposed to their PMe2Ph counterparts in mer-cis-(PEt2Ph)2(PPri3)H-trans-Cl2IrIII (2) but the PPri3 ligands are differently oriented and differently configured. Metal-ligand distances [ Ir -P(1,2,3) 2.333(2), 2.404(2), 2.368(2) Ǻ; Ir-Cl (1,2) 2.388(2), 2.400(2) Ǻ] are all within c. 0.02 Ǻ of those in (2). The P-Ir -P(trans) angle is 155.3(1)°.

1995 ◽  
Vol 48 (7) ◽  
pp. 1277 ◽  
Author(s):  
EJ Ditzel ◽  
GB Robertson

The structure of mer-trans-(PPri3)2(PH3)H-trans-Cl2IrIII (1) (Pri = isopropyl), the second third-row transition-metal-PH3 complex to be so characterized, has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group C 2/c with a 21.701(2), b 8.735(1), c 15.594(1) Ǻ, β 119.57(1)° and Z 4. Structure refinement by full-matrix least-squares analysis (2811 reflections, 113 parameters) converged with R = 0.016 and Rw = 0.022. Molecules exhibit crystallographically imposed C2 symmetry. The C2 axis passes through the iridium, hydride and PH3 phosphorus atoms, and requires the PH3 hydrogen atoms to be disordered. Important molecular dimensions are Ir-PPri3 2.371(1) Ǻ, Ir-PH3 2.362(1) Ǻ, Ir-Cl 2.374(1) Ǻ and P- Ir -P(trans) 163.21(3)°.


1977 ◽  
Vol 55 (2) ◽  
pp. 333-339 ◽  
Author(s):  
Colin James Lyne Lock ◽  
Graham Turner

The crystal and molecular structure of the title compound has been examined by single crystal X-ray diffraction. The crystals are monoclinic with a = 28.045(10), b = 8.766(3), c = 12.376(5) Å, β = 91.14(3)°. The space group is C2/c and there are eight molecules per unit cell. A total of 5053 independent reflections, of which 2860 were observed, were examined on a Syntex [Formula: see text] diffractometer. The structure was refined by full matrix least squares to an R2 value of 0.0449. The ligands form a very rough octahedron around the rhenium atom with Re—Cl(1), 2.441(3); Re—Cl(2), 2.366(3), Re—O(1), 1.684(7); Re—O(2), 1.896(6); Re—N(1), 2.144(7); Re—N(2), 2.132(7) Å. The pyridine rings are a dominant factor in determining the details of the molecular structure.


1988 ◽  
Vol 41 (5) ◽  
pp. 807 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

Evaporation of a methanol solution containing both mer -(PMe2Ph)3Cl3IrIII (1) and mer -(Pme2Ph)3H-trans-Cl2IrIII (2) yields a new crystalline species (3) which is morphologically distinct from either (1) or (2). The structure of (3) has been determined by single-crystal X-ray diffraction analysis. Crystals are monoclinic, space group P21/c, with a 15.747(2), b 10.305(1), c 16.790(2)Ǻ, β 92.75(3)� and Z 4, and contain, in approximately equal amounts, discrete molecules of both (1) and (2) distributed randomly in common lattice sites. Site content differs only according to whether there is H or Cl trans to the unique phosphine ligand . Structure refinement by full-matrix least-squares analysis (6183 reflections, 413 parameters) converged with R = 0.026, Rw = 0.034, and site occupancy factor for the unique chlorine atom equal to 0.530(4). Molecules each exhibit the conformation observed for pure (1) [pure (2) differs]. Derived metal- ligand distances are very similar to the weighted averages [53% (1), 47% (2)] of the corresponding distances in (1) and (2).


1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.


1997 ◽  
Vol 75 (5) ◽  
pp. 475-482 ◽  
Author(s):  
Wei Xu ◽  
Alan J. Lough ◽  
Robert H. Morris

New amineruthenium and amineiridium hydride derivatives have been synthesized and characterized with the objective of observing intramolecular [Formula: see text] or [Formula: see text] interactions. These include RuHCl(CO)(L)(PPri3)2 (1a, L = NH2NH2; 1b, L = NH3) and IrCl2(L)(H)(PCy3)2 (2a, L = SC(NH2)2; 2b, L = NH3; 2c, L = NH2NH2; 2d, L = NH2(CH2)3NH2; 2e, L = NH2OH). Instead, weak [Formula: see text] van der Waals contacts have been detected in the solid state by X-ray analysis and in solution by NMR T1 measurements and nOe techniques. Both X-ray crystal structure analysis and minimum T1 measurements indicate that the [Formula: see text] distances in the [Formula: see text] interactions are ca•2.0–2.2 Å. The weak interactions might influence the course of deuteration of these complexes under D2 gas. The crystal and molecular structure of IrCl2(NH3)(H)(PCy3)22a has been determined by X-ray diffraction at 173 K: monoclinic, space group P21/n, a = 14.859(2) Å, b = 18.579(3) Å, c = 18.548(3) Å, β = 97.29(1)°, V = 5079.1(13) Å3, Z = 4, full-matrix least-squares refinement on F2 for 10 953 independent reflections; R[F2 > 4σ(F2)] = 0.0283, wR(F2) = 0.0704. Keywords: ruthenium, iridium, hydride, dihydrogen, complexes, hydrogen bond, NMR, X-ray.


1988 ◽  
Vol 41 (5) ◽  
pp. 641 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structure of mer-(Pme2Ph)3Cl-cis-H2IrIII (1) has been determined by single-crystal X-ray and neutron diffraction analyses. Crystals are monoclinic, space group P21, with a 11.476(4), b 14.069(5), c 8.286(3)Ǻ, β 92.45(1)° and Z 2. Full-matrix least-squares analyses converged 0.022 for 7773 X-ray data and R(F2) = 0.062 for 1538 neutron data. Ir -H [1.557(11)Ǻ trans to Cl, 1.603(10) Ǻ trans to P] and Ir -P distances [2.292(1)Ǻ trans to P, 2.328(1)Ǻ trans to H] both exhibit trans lengthening effects. Consistent with the increased hydride content the Ir -P distances in (1) are c. 0.04 Ǻ shorter than for the corresponding bonds in its dichloro monohydrido analogues and c. 0.08 Ǻ shorter than those in the trichloride . In contrast Ir-Cl [2.505(1)Ǻ] is not significantly different to the corresponding distance (2.504 Ǻ av.) in mer -(PMe2Ph)3-cis-Cl2HIrIII.


1977 ◽  
Vol 30 (5) ◽  
pp. 1007 ◽  
Author(s):  
GR Scollary

A structural analysis of the platinum-silatrane complex, PtCl [Si(OCH2CH2)3N] [PMe2Ph]2, has been carried out by X-ray diffraction. Crystals are monoclinic, space group P21/c, a 6.630(4), b 17.465(6), c 22.297(6) Ǻ, β 97.4(2)�, Z 4. The structure has been refined by a full- matrix least-squares procedure to R 0.048 for 2165 reflections. Basic geometries are square (platinum), tetrahedral (silicon) and trigonal (nitrogen). Within the silatrane ligand, the Si-N non-bonding distance is 2.89(1) Ǻ.


1974 ◽  
Vol 52 (9) ◽  
pp. 1704-1708 ◽  
Author(s):  
I. D. Brown ◽  
C. J. L. Lock ◽  
Che'ng Wan

A compound, obtained in large yields from the reaction of acetylacetone and oxodichloroethoxobis(triphenylphosphine)rhenium(V) in benzene, has been shown by single crystal X-ray diffraction to be cis-dichloropentane-2,4-dionato-trans-bis(triphenylphosphine)rhenium(III). The crystals are monoclinic with a = 13.06(1), b = 18.30(1), c = 16.55(1) Å, and β = 112.7(2)°. The space group is P21/c and there are four molecules per unit cell. A total of 3841 independent reflections, of which 2686 were observed, were examined by film methods, the intensities being measured with a microdensitometer. The structure was refined by full matrix least-squares analysis to an R2 value of 0.068. The ligands are arranged around the rhenium atom in the manner described by the compound name to give a rough octahedron of nearest neighbours and the Re—Cl (2.369 Å av.), Re—O (2.02 Å av.), and Re—P (2.474 Å av.) distances are as expected.


1991 ◽  
Vol 46 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Michel Mégnamisi-Bélombé ◽  
Robert Parfait Massongo Bokanjo ◽  
Bernhard Nuber

The structure of hydro-trans-diiodobis(2,3-butanedione dioximato)cobaltate(III), H(CoI2(dmg)2) (dmg- = dimethylglyoximate) has been determined by single crystal X -ray diffraction at ambient temperature. The crystals are monoclinic, space group C 2/c, C8H15CoI2N4O4, Mr = 543.98; a = 15.714(6), b = 7.408(3), c = 13.944(5) Å; β = 107.76(3)°; V = 1545.85 Å3; Z = 4; Dc = 2.34 Mg m -3. The com pound is best visualized as a monobasic acid. The molecules are linked together into two-dimensional network, where linkage parallel to the ac plane is effected by weak intermolecular iodine interactions (I ···I = 3.826 Å), and linkage along the b axis by symmetric intermolecular O - H - O bridges (O - Ointermol = 2.499 Å) involving the acidic protons. Each molecule contains two equivalent intramolecular O - H - O bridges (O ··· Ointrarnol = 2.603 Å). The coordination geometry around Co is a distorted (4+2) octahedron of four chelating equatorial N atoms and two apical iodine atoms. The rectilinear I- Co- I triads are arranged in infinite, faintly zigzagged heteroatomic chains propagating parallel to the ac plane.


1976 ◽  
Vol 54 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Colin James Lyne Lock ◽  
Robert Anthony Speranzini ◽  
John Powell

The crystal and molecular structure of trans-dichloro(bis(isopropyl)sulfoxide-S)(1-methylcytosine-N)platinum(II) has been determined by single crystal X-ray diffraction. The crystals are triclinic with a = 16.205(5), b = 8.078(2), c = 6.776(2) Å, α = 106.53(2), β = 96.35(2), γ = 98.54(2)°. The space group is [Formula: see text] and there are two molecules per unit cell. A total of 2294 independent reflections, of which 2023 were observed, were examined on a Syntex [Formula: see text] diffractometer. The structure was refined by full matrix least squares analysis to an R2 value of 0.0427. The ligands form a rough square around the platinum atom with Pt—Cl(1), 2.304(3), Pt—Cl(2), 2.287(4), Pt—S, 2.232(2), Pt—N, 2.058(7). Distances within the ligands are normal. The plane of the cytosine ring is at 84.4° to the plane formed by the ligands around platinum.


Sign in / Sign up

Export Citation Format

Share Document