Isotope effects in nucleophilic substitution reactions. II. Secondary α-deuterium kinetic isotope effects: a criterion of mechanism?

1979 ◽  
Vol 57 (9) ◽  
pp. 1089-1097 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

A very large secondary α-deuterium kinetic isotope effect of 1.179 ± 0.007 (1.086 ± 0.003 per α-deuterium) has been observed for the SN2 reaction of thiophenoxide ion with benzyldimethylphenylammonium ion in DMF at 0°C. This large isotope effect which is far outside the range reported for SN2 reactions, is attributed to the fact that the extraordinarily large steric crowding around the Cα—H bonds in the substrate is reduced in the SN2 transition state. The structure of the transition state is shown to be consistent with this hypothesis.


1979 ◽  
Vol 57 (11) ◽  
pp. 1354-1367 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

The nucleophilic substitution reactions of a series of 4-substituted phenylbenzyldimethyl-ammonium ions with thiophenoxide ions at 0 °C in N,N-dimethylformamide have been used to demonstrate how a change in the leaving group alters the structure of the SN2 transition state. Heavy atom (nitrogen) kinetic isotope effects, secondary α-deuterium kinetic isotope effects and Hammett ρ values provide qualitative descriptions of both the nucleophile–α-carbon and α-carbon–leaving group bonds in the transition states of these reactions. The results indicate that changing to a better leaving group causes the bond between the α-carbon and the nucleophile to be much more fully formed while the bond to the leaving group is essentially unchanged. The results are discussed in the light of current theories of substituent effects on SN2 reactions and a possible explanation for the surprising results (i) that the greatest effect is in the bond more remote from the point of structural change and (ii) that more nucleophilic assistance is required to displace a better leaving group is given.



2004 ◽  
Vol 82 (9) ◽  
pp. 1336-1340
Author(s):  
Xicai Huang ◽  
Andrew J Bennet

The aqueous ethanolysis reactions of adamantylideneadamantyl tosylate, -bromide, and -iodide (1-OTs, 1-Br and 1-I) were monitored as a function of ionic strength. Special salt effects are observed during the solvolyses of both homoallylic halides, but not in the case of the tosylate 1-OTs. The measured α-secondary deuterium kinetic isotope effects for the solvolysis of 1-Br in 80:20 and 60:40 v/v ethanol–water mixtures at 25 °C are 1.110 ± 0.018 and 1.146 ± 0.009, respectively. The above results are consistent with the homoallylic halides reacting via a virtual transition state in which both formation and dissociation of a solvent-separated ion pair are partially rate-determining. While the corresponding transition state for adamantylideneadamantyl tosylate involves formation of the solvent-separated ion pair.Key words: salt effects, kinetic isotope effect, internal return, solvolysis, ion pairs.



1982 ◽  
Vol 60 (19) ◽  
pp. 2500-2520 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Zbigniew Waszczylo

Kinetic studies, secondary α-deuterium kinetic isotope effects, primary chlorine kinetic isotope effects (1), Hammett ρ values determined by changing the substituent in the nucleophile, and activation parameters have been used to determine the detailed (relative) structures of the transition states for the SN2 reactions between para-substituted benzyl chlorides and thiophenoxide ion. A rationale for the U-shaped Hammett ρ plots observed when para-substituted benzyl compounds react with negatively charged nucleophiles is also presented.



1988 ◽  
Vol 66 (5) ◽  
pp. 1263-1271 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Zhu-Gen Lai

Spectroscopic and conductivity studies of sodium thiophenoxide solutions in four different solvents and the secondary α-deuterium kinetic isotope effects found in the presence of 15-crown-5 ether demonstrate that the secondary α-deuterium kinetic isotope effect and transition state structure for the SN2 reaction between sodium thiophenoxide and n-butyl chloride are significantly different, depending on whether the ionic reactant is a solvent-separated ion-pair complex or a free ion. In all three solvents in which the form of the ionic reactant changes, a smaller isotope effect and tighter transition state are found for the reaction with the ion-pair complex.



2017 ◽  
Vol 70 (1) ◽  
pp. 101 ◽  
Author(s):  
Hasi Rani Barai

The kinetics of the nucleophilic substitution reactions of bis(N,N-diethylamino)phosphinic chloride with substituted anilines (XC6H4NH2) and deuterated anilines (XC6H4ND2) are investigated in MeCN at 65.0°C. The deuterium kinetic isotope effects (DKIEs) are secondary inverse (kH/kD < 1: 0.706–0.947) and the magnitudes of the secondary inverse DKIEs (kH/kD) increase constantly as the nucleophiles are changed from weakly basic to strongly basic anilines. The magnitudes of the selectivity parameters are ρX(H) = –6.34, and βX(H) = 2.24 with substituted anilines and ρX(D) = –6.13 and βX(D) = 2.17 with deuterated anilines. A concerted SN2 mechanism involving predominant backside attack is proposed based on the kH/kD values with substituent X.



1998 ◽  
Vol 76 (6) ◽  
pp. 758-764 ◽  
Author(s):  
Yao-ren Fang ◽  
Zhu-gen Lai ◽  
Kenneth Charles Westaway

The effect of ion-pairing in an SN2 reaction is very different when the nucleophilic atom is changed from sulfur to oxygen, i.e., changing the nucleophile from thiophenoxide ion to phenoxide ion. When the nucleophile is sodium thiophenoxide, ion-pairing markedly alters the secondary α -deuterium kinetic isotope effect (transition state structure) and the substituent effect found by changing the para substituent on the nucleophile. When the nucleophile is sodium phenoxide, ion-pairing does not significantly affect the secondary α -deuterium or the chlorine leaving group kinetic isotope effects (transition state structure) or the substituent effects found by changing a para substituent on the nucleophile or the substrate. The different effects of ion-pairing may occur because the electron density on the hard oxygen atom of the sodium phenoxide is not affected significantly by ion-pairing.Key words: nucleophilic substitution, SN2, kinetic isotope effect, transition state, substituent effects, ion-pair.



1960 ◽  
Vol 38 (11) ◽  
pp. 2171-2177 ◽  
Author(s):  
K. T. Leffek ◽  
J. A. Llewellyn ◽  
R. E. Robertson

The secondary β-deuterium isotope effects have been measured in the water solvolytic reaction of alkyl halides and sulphonates for primary, secondary, and tertiary species. In every case the kinetic isotope effect was greater than unity (kH/kD > 1). This isotope effect may be associated with varying degrees of hyperconjugation or altered non-bonding intramolecular forces. The experiments make it difficult to decide which effect is most important.



Sign in / Sign up

Export Citation Format

Share Document