On the crossed-aldol reaction of cyclohexane-1,2-dione with acetone, and the preparation of pyrroline derivatives from the product

1988 ◽  
Vol 66 (5) ◽  
pp. 1081-1083 ◽  
Author(s):  
George M. Strunz ◽  
Chao-Mei Yu

Acetone reacts with cyclohexane-1,2-dione, on refluxing in the presence of potassium carbonate, to give the crossed-aldol product, 2-hydroxy-2-acetonylcyclohexanone, 2 (R=CH3). Other methyl ketones react similarly with cyclohexane-1,2-dione. This is believed to be a consequence of unfavorable dipole interaction in the 1,2-dione. The product, on reaction with liquid ammonia, afforded the 5-amino-4-hydroxy-1-pyrroline derivative, 5, which was reduced with lithium aluminum hydride to the 3-hydroxy-1-pyrroline, 7.


1975 ◽  
Vol 53 (19) ◽  
pp. 2838-2848 ◽  
Author(s):  
Edward Piers ◽  
Ronald W. Britton ◽  
M. Bert Geraghty ◽  
Robert J. Keziere ◽  
Fusao Kido

Efficient, stereoselective syntheses of the tricyclic sesquiterpenoids (+)-copacamphor (3), (+)-copaborneol (4), (+)-copaisoborneol (5), (−)-ylangocamphor (6), (−)-ylangoborneol (7), and (−)-ylangoisoborneol (8) are described. Conversion of the keto acetate 9 (previously synthesized from the dione 1) into the keto tosylate 17 was accomplished via an eight-step sequence. Intramolecular alkylation of 17 afforded, in high yield, (+)-copacamphor (3), which had previously been converted into the corresponding alcohols 4 and 5 by Kolbe-Haugwitz and Westfelt. Alkylation of the enolate anion of the bicyclic dione 2 with 2-bromopropane in hexamethylphosphoramide gave mainly the O-alkylation product 19. Conversion of 19 into the keto mesylate 29 was carried out in 5 synthetic steps. Intramolecular alkylation of 29 afforded (−)-ylangocamphor (6). Reduction of the latter with calcium in liquid ammonia gave (−)-ylangoborneol (7), while reduction with lithium aluminum hydride yielded (−)-ylangoisoborneol (8).



1973 ◽  
Vol 51 (13) ◽  
pp. 2102-2104 ◽  
Author(s):  
Donald G. Lee ◽  
James R. Brownridge

The reduction of ethyl phenylpropiolate by lithium aluminum hydride results in partial reduction of the triple bond to give trans-cinnamyl alcohol. If ethyl phenylpropiolate is reduced by LiAlD4 followed by work-up with acetone and H2O the product is the specifically labeled compound, trans-3-phenyl-2-propen-1-ol-1,1,2-d3. If the ester is reduced with LiAlH4 followed by work-up with acetone-d6 and D2O the product is trans-3-phenyl-2-propen-1-ol-O,3-d2. Oxidation of these two products by sodium ruthenate leads to formation of trans-cinnamic acid-α-d and trans-cinnamic acid-β-d, respectively.



Sign in / Sign up

Export Citation Format

Share Document