Isotope effects in nucleophilic substitution reactions XI. The effect of ion-pairing, substituents, and the solvent on SN2 transition states

1999 ◽  
Vol 77 (5-6) ◽  
pp. 879-889 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
W Jiang

The secondary alpha deuterium and primary leaving group nitrogen KIEs and Hammett ρ values found for the free ion and ion-pair SN2 reactions between benzyldimethylphenylammonium ion and sodium para-substituted thiophenoxides in methanol at 20.000°C show how (i) ion-pairing of the nucleophile, (ii) a change in substituent in the nucleophile, and (iii) a change in solvent alters the structure of a Type II SN2 transition state. Ion-pairing shortens the weaker sulfur - alpha carbon (S—Cα) transition state bond significantly but does not alter the stronger alpha carbon - leaving group (Cα—N) transition state bond as the bond strength hypothesis predicts. However, the effect of ion pairing, i.e., the decrease in the S—Cα bond on ion-pairing, decreases as a more electron-withdrawing substituent is added to the nucleophile, and the S—Cα bond actually increases when the nucleophile is the p-chlorothiophenoxide ion. The identical Hammett ρ values of -0.85 and -0.84 for the free ion and ion-pair reactions, respectively, may be observed because, on average, the S—Cα bonds are identical in the free ion and ion-pair transition states. When a more electron-donating substituent is added to the nucleophile, an earlier transition state is found in both the ion-pair and free ion reactions. However, the substituent effect is smaller in the ion-pair reactions, presumably because the change in the negative charge on the sulfur atom with substituent is greater in the free ion than in the ion-pair. The substituent effect on transition state structure suggested by the KIEs is not predicted by any of the theories that are used to predict substituent effects on SN2 reactions. Both the secondary alpha deuterium and primary leaving group nitrogen KIEs and the Hammett ρ values indicate that the transition state is earlier when the solvent is changed from DMF to methanol as the "solvation rule for SN2 reactions" predicts. This probably occurs because an earlier, more ionic, transition state is more highly solvated (more stable) in methanol.Key words: nucleophilic substitution, SN2, isotope effect, transition state, substituent, ion-pair.

1989 ◽  
Vol 67 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Zhu-Gen Lai ◽  
Kenneth Charles Westaway

The secondary α-deuterium kinetic isotope effects and substituent effect found in the SN2 reactions between a series of para-substituted sodium thiophenoxides and benzyldimethylphenylammonium ion are significantly larger when the reacting nucleophile is a free ion than when it is a solvent-separated ion pair complex. Tighter transition states are found when a poorer nucleophile is used in both the free ion and ion pair reactions. Also, the transition states for all but one substituent are tighter for the reactions with the solvent-separated ion pair complex than with the free ion. Hammett ρ values found by changing the substituent on the nucleophile do not appear to be useful for determining the length of the sulphur–α-carbon bond in the ion pair and free ion transition states. Keywords: Isotope effects, ion pairing, nucleophilic substitution, SN2 reactions, transition states.


1991 ◽  
Vol 69 (6) ◽  
pp. 1017-1021 ◽  
Author(s):  
Yao-Ren Fang ◽  
Kenneth Charles Westaway

A spectroscopic investigation indicated that lithium thiophenoxide exists as a contact ion pair complex in dry diglyme whereas the other alkali metal thiophenoxides exist as a solvent-separated ion pair complex in diglyme. The addition of small amounts of water converts the lithium thiophenoxide contact ion pair complex into a solvent-separated ion pair complex. A smaller secondary α-deuterium kinetic isotope effect and a larger Hammett p value are observed when the nucleophile is the contact ion pair complex in the SN2 reaction between n-butyl chloride and thiophenoxide ion in diglyme. This indicates that the transition state for the contact ion pair complex reaction is tighter with a shorter nucleophile–α-carbon bond than the transition state for the solvent-separated ion pair complex reaction. The secondary α-deuterium kinetic isotope effects for the free ion and the solvent-separated ion pair complex reactions between sodium thiophenoxide and n-butyl chloride in DMF suggest that the loosest transition state is found when the nucleophile is the free ion. Key words: transition state, SN2, isotope, deuterium, Hammett ρ.


1979 ◽  
Vol 57 (11) ◽  
pp. 1354-1367 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

The nucleophilic substitution reactions of a series of 4-substituted phenylbenzyldimethyl-ammonium ions with thiophenoxide ions at 0 °C in N,N-dimethylformamide have been used to demonstrate how a change in the leaving group alters the structure of the SN2 transition state. Heavy atom (nitrogen) kinetic isotope effects, secondary α-deuterium kinetic isotope effects and Hammett ρ values provide qualitative descriptions of both the nucleophile–α-carbon and α-carbon–leaving group bonds in the transition states of these reactions. The results indicate that changing to a better leaving group causes the bond between the α-carbon and the nucleophile to be much more fully formed while the bond to the leaving group is essentially unchanged. The results are discussed in the light of current theories of substituent effects on SN2 reactions and a possible explanation for the surprising results (i) that the greatest effect is in the bond more remote from the point of structural change and (ii) that more nucleophilic assistance is required to displace a better leaving group is given.


1993 ◽  
Vol 71 (12) ◽  
pp. 2084-2094 ◽  
Author(s):  
Kenneth Charles Westaway

The effects of substituents on the structure of SN2 transition states suggested by kinetic isotope effects and Hammett ρ values are often different and, moreover, often do not agree with substituent effects predicted by current theories whether the change in substituent is made in the nucleophile, in the leaving group, or at the α-carbon. The importance of the strength of the reacting bonds in determining the effects of substituents on transition-state structure is investigated. A bond strength hypothesis that suggests there will be a significant change in the weaker reacting bond but little or no change in the stronger reacting bond in an SN2 transition state when a substituent in the nucleophile, the substrate, or the leaving group is altered in an SN2 reaction, predicts a high percentage of the experimental results.


1998 ◽  
Vol 76 (6) ◽  
pp. 758-764 ◽  
Author(s):  
Yao-ren Fang ◽  
Zhu-gen Lai ◽  
Kenneth Charles Westaway

The effect of ion-pairing in an SN2 reaction is very different when the nucleophilic atom is changed from sulfur to oxygen, i.e., changing the nucleophile from thiophenoxide ion to phenoxide ion. When the nucleophile is sodium thiophenoxide, ion-pairing markedly alters the secondary α -deuterium kinetic isotope effect (transition state structure) and the substituent effect found by changing the para substituent on the nucleophile. When the nucleophile is sodium phenoxide, ion-pairing does not significantly affect the secondary α -deuterium or the chlorine leaving group kinetic isotope effects (transition state structure) or the substituent effects found by changing a para substituent on the nucleophile or the substrate. The different effects of ion-pairing may occur because the electron density on the hard oxygen atom of the sodium phenoxide is not affected significantly by ion-pairing.Key words: nucleophilic substitution, SN2, kinetic isotope effect, transition state, substituent effects, ion-pair.


1973 ◽  
Vol 26 (2) ◽  
pp. 273 ◽  
Author(s):  
DE Giles ◽  
AJ Parker

Sulphur/nitrogen reactivity ratios in a series of aromatic nucleophilic substitution reactions of ambident thiocyanate ion have been determined. There are profound differences from the pattern found in SN2 reactions at a saturated carbon atom. Abnormal transition states, involving interactions between entering and leaving group, are likely in the bond-breaking step of the intermediate complex in reactions of thiocyanate ion with 1-fluoro-2,4-dinitrobenzene and with 2,4- dinitrophenyl 4-toluenesulphonate. The nitro-substituted aryl thiocyanates are shown to be tri-functional electrophiles, with reactive centres at aromatic carbon, at cyanide carbon, and at sulphur. Aryl 4-toluenesulphonates are bifunctional electrophiles with reactive centres at aryl carbon and sulphonyl sulphur. The site of attack by nucleophiles depends on the nature of the nucleophile. The sulphur/nitrogen reactivity ratio of ambident SCN-, and the electrophilic reactivity of tri- and bi-functional substrates, are in most instances consistent with the Hard and Soft Acids and Bases principle. Exceptions to the principle in some instances reveal differences between the SNAr and SN2 mechanisms, and in others indicate abnormal transition states.


1986 ◽  
Vol 64 (6) ◽  
pp. 1021-1025 ◽  
Author(s):  
Arnold Jarczewski ◽  
Grzegorz Schroeder ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

Rate constants for the proton and deuteron transfer from 1-(4-nitrophenyl)-1-nitroethane to cesium n-propoxide in n-propanol have been measured under pseudo-first-order conditions with an excess of base for four temperatures between 5 and 35 °C. Using literature values of the fraction of cesium n-propoxide ion pairs that are dissociated into free ions, separate second-order rate constants for the proton and deuteron transfer to the ion pair and to the free ion have been calculated. The cesium n-propoxide ion pair is about 2.8 times more reactive than the free n-propoxide ion. The primary kinetic isotope effects for the two reactions are the same (kH/kD = 6.1–6.3 at 25 °C) within experimental error. The enthalpy of activation is smaller for the ion-pair reaction and the entropy of activation more negative than for the free-ion reaction. For proton transfer, ΔH±ion pair = 8.3 ± 0.2 kcal mol−1, ΔH±ion = 9.6 ± 1.0 kcal mol−1, ΔS±ion pair = −12.3 ± 0.6 cal mol−1 deg−1, ΔS±ion = −10.1 ± 3.4 cal mol−1 deg−1. The greater reactivity of the ion pair relative to the free ion is interpreted in terms of the weaker solvation shell of the ion pair in the initial state.


2018 ◽  
Vol 115 (27) ◽  
pp. E6209-E6216 ◽  
Author(s):  
Rajesh K. Harijan ◽  
Ioanna Zoi ◽  
Dimitri Antoniou ◽  
Steven D. Schwartz ◽  
Vern L. Schramm

Transition path-sampling calculations with several enzymes have indicated that local catalytic site femtosecond motions are linked to transition state barrier crossing. Experimentally, femtosecond motions can be perturbed by labeling the protein with amino acids containing 13C, 15N, and nonexchangeable 2H. A slowed chemical step at the catalytic site with variable effects on steady-state kinetics is usually observed for heavy enzymes. Heavy human purine nucleoside phosphorylase (PNP) is slowed significantly (kchemlight/kchemheavy = 1.36). An asparagine (Asn243) at the catalytic site is involved in purine leaving-group activation in the PNP catalytic mechanism. In a PNP produced with isotopically heavy asparagines, the chemical step is faster (kchemlight/kchemheavy = 0.78). When all amino acids in PNP are heavy except for the asparagines, the chemical step is also faster (kchemlight/kchemheavy = 0.71). Substrate-trapping experiments provided independent confirmation of improved catalysis in these constructs. Transition path-sampling analysis of these partially labeled PNPs indicate altered femtosecond catalytic site motions with improved Asn243 interactions to the purine leaving group. Altered transition state barrier recrossing has been proposed as an explanation for heavy-PNP isotope effects but is incompatible with these isotope effects. Rate-limiting product release governs steady-state kinetics in this enzyme, and kinetic constants were unaffected in the labeled PNPs. The study suggests that mass-constrained femtosecond motions at the catalytic site of PNP can improve transition state barrier crossing by more frequent sampling of essential catalytic site contacts.


Sign in / Sign up

Export Citation Format

Share Document