Structural elucidation of lipopolysaccharide core oligosaccharides from lic1 and lic1/lic2 mutants of Haemophilus influenzae type b strain Eagan

2008 ◽  
Vol 54 (4) ◽  
pp. 281-290 ◽  
Author(s):  
Hussein Masoud ◽  
E. Richard Moxon ◽  
James C. Richards

The structures of lipopolysaccharides (LPSs) of lic1 and lic1/lic2 mutants from Haemophilus influenzae type b strain Eagan (RM153) were investigated using methylation analysis, electrospray ionization – mass spectrometry, and nuclear magnetic resonance spectroscopy on O-deacylated, O- and N-deacylated core oligosaccharide (OS); and deacylated, dephosphorylated, and terminally reduced samples. The backbone OS derived from the major LPS glycoforms were determined to consist of the inner-core triheptosyl unit, l-α-d-Hepp-(1-2)-l-α-d-Hepp-(1-3)-l-α-d-Hepp-(1-, common to all H. influenzae strains investigated to date that is linked to the lipid A region of the molecule via a Kdo residue to which β-d-Glcp and β-d-Galp residues are attached in 1,4 and 1,2 linkages to the proximal (HepI) and distal (HepIII) heptose residues, respectively. It was found that the lic1 mutant predominately elaborates the Hex4 LPS glycoforms previously identified in the parent strain where a β-d-Glcp-(1-4)-α-d-Glcp unit is linked in a 1,3 linkage to the central heptose (HepII) of the triheptosyl moiety. The lic1 locus consists of 4 genes (lic1A to lic1D) in a single transcriptional unit that directs phase variable expression of phosphocholine. The lic1A gene is phased off in the RM153 isolate of strain Eagan. LPS from the double mutant, lic1/lic2 had a similar structure to that of lic1 mutant except that there was no chain extension from the central heptose in the inner core (HepII). The lic2 locus consists of 4 genes (lic2A to lic2D). Our structural data were consistent with the proposed function of lic2C, providing the first definitive evidence for its role as the glycosyltransferase required for chain initiation from HepII. The presence of an O-acetyl group at O-3 of the distal heptose (HepIII) was elucidated by 1H NMR on the mild acid liberated core OS samples.

2005 ◽  
Vol 73 (4) ◽  
pp. 2213-2221 ◽  
Author(s):  
Ruth Griffin ◽  
Andrew D. Cox ◽  
Katherine Makepeace ◽  
James C. Richards ◽  
E. Richard Moxon ◽  
...  

ABSTRACT The phase-variable locus lex2 is required for expression of a Haemophilus influenzae lipopolysaccharide (LPS) epitope of previously unknown structure. This epitope, which is reactive with monoclonal antibody (MAb) 5G8, has been associated with virulence of type b strains. When strain RM118 (from the same source as strain Rd), in which the lex2 locus and MAb 5G8 reactivity are absent, was transformed with lex2 DNA, transformants that were reactive with MAb 5G8 were obtained. Surprisingly, the 5G8 reactivity of these transformants was phase variable, although the lex2 locus lacked tetrameric repeats and was constitutively expressed. This phase variation was shown to be the result of phase-variable expression of phosphorylcholine (PCho) such that MAb 5G8 reacted only in the absence of PCho. Structural analysis showed that, compared to RM118, the lex2 transformant had acquired a tetrasaccharide, Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β1,4, linked to the proximal heptose (HepI). A terminal GalNAc was detected in a minority of glycoforms. LPS derived from a mutant of RM7004, a virulent type b strain which naturally expresses lex2 and has LPS containing the same tetrasaccharide linked to HepI as the sole oligosaccharide extension from the inner core, confirmed that GalNAc is not a part of the MAb 5G8-reactive epitope. Thus, MAb 5G8 specifically binds to the structure Gal-α1,4-Gal-β1,4-Glc-β1,4-Glc-β attached via a 1,4 linkage to HepI of H. influenzae LPS, and we show that the ability to synthesize this novel tetrasaccharide was associated with enhanced bacterial resistance to complement-mediated killing.


Sign in / Sign up

Export Citation Format

Share Document