Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici

2008 ◽  
Vol 54 (8) ◽  
pp. 600-609 ◽  
Author(s):  
Jose G. Maciá-Vicente ◽  
Hans-Börje Jansson ◽  
Kurt Mendgen ◽  
Luis V. Lopez-Llorca

Fungal root endophytes obtained from natural vegetation were tested for antifungal activity in dual culture tests against the root pathogen Gaeumannomyces graminis var. tritici. Fifteen isolates, including Acremonium blochii , Acremonium furcatum , Aspergillus fumigatus , Cylindrocarpon sp., Cylindrocarpon destructans , Dactylaria sp., Fusarium equiseti, Phoma herbarum , Phoma leveillei , and a sterile mycelium, selected based on the dual culture test, were inoculated on barley roots in growth tubes under axenic conditions, both in the absence and presence of G. graminis var. tritici. All isolates colonized the rhizosphere and very often the root cortex without causing disease symptoms and without affecting plant growth. Eight isolates significantly reduced the symptoms caused by G. graminis var. tritici, and 6 of them reduced its presence in the roots.


Author(s):  
Seddighe Mohammadi ◽  
Leila Ghanbari

Wheat take-all disease caused by Gaeumannomyces graminis var. tritici has recently been detected in different regions of Iran. With respect to biocontrol effect of Trichoderma spp. on many pathogenic fungi, seven isolates of Trichoderma and four isolates of Talaromyces were in vitro evaluated in terms of their biological control against the disease causal agent. In dual culture test the five isolates showed efficient competition for colonization against pathogenic fungus and the highest percentages of inhibition belonging to Talaromyces flavus 60 and Talaromyces flavus 136 were 59.52 and 57.61%, respectively. Microscopic investigations showed that in regions where antagonistic isolates and Gaeumannomyces graminis var. tritici coincide, hyphal contact, penetration and fragmentation of Gaeumannomyces graminis var. tritici were observed. Investigating the effect of volatile and non-volatile compounds at 10 ml concentration showed that the highest inhibition percentage on mycelium growth of the pathogen caused by T. harzianum (44.76%) and T. longibrachiatum (52.38%) respectively.



1973 ◽  
Vol 26 (6) ◽  
pp. 1285 ◽  
Author(s):  
GC Mac Nish

Two methods (visual assessment and a bioassay) of detecting the presence of G. graminis var. tritici in wheat stubble were compared. Of the stubble visually assessed as infected, only 4 % was not confirmed as infected by the bioassay. On the other hand, the bioassay showed that 41 % of the stubble visually assessed as free of infection was incorrectly assigned.



2010 ◽  
Vol 100 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Youn-Sig Kwak ◽  
Peter A. H. M. Bakker ◽  
Debora C. M. Glandorf ◽  
Jennifer T. Rice ◽  
Timothy C. Paulitz ◽  
...  

Dark pigmented fungi of the Gaeumannomyces–Phialophora complex were isolated from the roots of wheat grown in fields in eastern Washington State. These fungi were identified as Phialophora spp. on the basis of morphological and genetic characteristics. The isolates produced lobed hyphopodia on wheat coleoptiles, phialides, and hyaline phialospores. Sequence comparison of internal transcribed spacer regions indicated that the Phialophora isolates were clearly separated from other Gaeumannomyces spp. Primers AV1 and AV3 amplified 1.3-kb portions of an avenacinase-like gene in the Phialophora isolates. Phylogenetic trees of the avenacinase-like gene in the Phialophora spp. also clearly separated them from other Gaeumannomyces spp. The Phialophora isolates were moderately virulent on wheat and barley and produced confined black lesions on the roots of wild oat and two oat cultivars. Among isolates tested for their sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), the 90% effective dose values were 11.9 to 48.2 μg ml–1. A representative Phialophora isolate reduced the severity of take-all on wheat caused by two different isolates of Gaeumannomyces graminis var. tritici. To our knowledge, this study provides the first report of an avenacinase-like gene in Phialophora spp. and demonstrated that the fungus is significantly less sensitive to 2,4-DAPG than G. graminis var. tritici.



Author(s):  
J. Walker

Abstract A description is provided for Gaeumannomyces graminis var. tritici. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Gramineae, especially Triticum, Hordeum, Secale, Agropyron and several other grass genera and, more rarely, Sorghum and Zea; also recorded from the roots of plants in other families. DISEASE: Take-all of cereals and grasses (also referred to as deadheads or whiteheads, pietin and pied noir (France), Schwarzbeinigkeit and Ophiobolus Fusskrankheit (Germany), Ophiobolusvoetziekt (Netherlands) and others). Root infection is favoured by soil temperature from 12-20°C (Butler, 1961). Ascospore germ tubes penetrate root hairs and the epidermis in the meristematic region (Weste, 1972) leading to plugging of xylem and root death. GEOGRAPHICAL DISTRIBUTION: (CMI Map 334, ed. 3, 1972). Widespread, especially in temperate zones. Africa; Asia (India, Iran, Japan, USSR): Australasia and Oceania; Europe; North America (Canada, USA); South America (Argentina, Brazil, Chile, Colombia, Uruguay). TRANSMISSION: In soil on infected organic fragments, as runner hyphae on roots of cereals and grasses and, under special conditions, by ascospores. Seed transmission very doubtful (47, 3058).





2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jie Zhang ◽  
Haixia Yan ◽  
Mingcong Xia ◽  
Xiaoyun Han ◽  
Lihua Xie ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document