Detection of WWE2-relatedLentisphaeraeby 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate

2010 ◽  
Vol 56 (10) ◽  
pp. 846-852 ◽  
Author(s):  
Rim Driss Limam ◽  
Théodore Bouchez ◽  
Rakia Chouari ◽  
Tianlun Li ◽  
Insaf Barkallah ◽  
...  

We collected samples of anaerobic landfill leachate from municipal solid waste landfill (Vert-le-Grand, France) and constructed 16S rRNA clone libraries using primers targeting Planctomycetes and relatives (Pla46F and 1390R). Analyses of 16S rRNA gene sequences resulted in the abundant representation of WWE2-related Lentisphaerae, members of the phylum Lentisphaerae, in the clone library (98% of the retrieved sequences). Although the sequences that are phylogenetically affiliated with the cultured isolate Victivallis vadensis were identified (WWE2 subgroup II), the majority of the sequences were affiliated with an uncultured Lentisphaerae lineage (WWE2 subgroup I). We designed oligonucleotides probes targeting the specific 16S rRNA gene regions of those 2 subgroups. Fluorescence in situ hybridization confirmed the abundance of the uncultivated WWE2 subgroup I in our leachate samples.

2002 ◽  
Vol 4 (11) ◽  
pp. 713-720 ◽  
Author(s):  
Andreas Schramm ◽  
Bernhard M. Fuchs ◽  
Jeppe L. Nielsen ◽  
Mauro Tonolla ◽  
David A. Stahl

2010 ◽  
Vol 56 (10) ◽  
pp. 853-863 ◽  
Author(s):  
Ola A. Olapade

Bacterial community diversity in marine bacterioplankton assemblages were examined in 3 coastal locations along the northeastern Gulf of Mexico (GOM) using 16S rRNA gene libraries and fluorescence in situ hybridization approaches. The majority of the sequences (30%–60%) were similar to the 16S rRNA gene sequences of unknown bacteria; however, the operational taxonomic units from members of the Cyanobacteria, Proteobacteria, and Bacteroidetes were also present at the 3 GOM sites. Overall, sequence diversity was more similar between the Gulf sites of Carrabelle and Ochlockonee than between either of the Gulf sites and Apalachicola Bay. Fluorescence in situ hybridization analyses revealed the quantitative predominance of members of the Alphaproteobacteria subclass and the Cytophaga – Flavobacterium cluster within the bacterioplankton assemblages. In general, the study further reveals the presence of many bacterial taxa that have been previously found to be dominant in coastal marine environments. Differences observed in the representation of the various bacterial phylogenetic groups among the GOM coastal sites could be partly attributed to dynamic variations in several site-specific conditions, including intermittent tidal events, nutrient availability, and anthropogenic influences.


2019 ◽  
Vol 42 (5) ◽  
pp. 126000 ◽  
Author(s):  
Insa Bakenhus ◽  
Bernd Wemheuer ◽  
Pinar Akyol ◽  
Helge-Ansgar Giebel ◽  
Leon Dlugosch ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 µmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


Sign in / Sign up

Export Citation Format

Share Document