bacterial biomass
Recently Published Documents


TOTAL DOCUMENTS

527
(FIVE YEARS 119)

H-INDEX

58
(FIVE YEARS 5)

2021 ◽  
Vol 12 (6) ◽  
pp. 621-637
Author(s):  
Ujjwal Kumar ◽  
◽  
Ashok K. Jha ◽  
Raghbendra Thakur ◽  
◽  
...  

Arsenic, chromium and organic dyes are the prominent carcinogenic agents, posing a serious health hazard. In current scenario, groundwater as well as surface water mostly contaminated by chemical complexes of As (III), Cr (VI) and organic dyes, these are leading hazardous threat to eco-system. Several mitigation techniques of As (III), Cr (VI) and organic dyes are available but efforts are going on to devise a novel method of removal of these toxicants. This review takes into account all the recent advances in the detoxification of contaminated water exploring removal mechanism by biosorption and bioaccumulation. The possibility of the removal of toxic heavy metals from an aqueous medium by plant and bacterial biomass has been discussed. Now a days, bioaccumulation and biosorption from plants and microbial sources has emerged as simple, effective and eco-friendly techniques for decontamination of these chemical compounds from water resources at very low cost. Many agricultural products and solid wastes have also been found suitable decontaminant of toxic heavy metals and dyes. A wide spectrum of medicinal and aromatic plants as well as aquatic plants available in abundance may also be utilized as potential remover of As (III), Cr (VI) and organic dyes. This article explained mechanism and application on detail aspects of bioremediation technology including conventional techniques with recent development. This review shows the trends and development of mitigation stretagies by bioremediation with latest updates.


2021 ◽  
Vol 18 (24) ◽  
pp. 6589-6616
Author(s):  
Samu Elovaara ◽  
Eeva Eronen-Rasimus ◽  
Eero Asmala ◽  
Tobias Tamelander ◽  
Hermanni Kaartokallio

Abstract. Microbial consumption of phytoplankton-derived organic carbon in the pelagic food web is an important component of the global C cycle. We studied C cycling in two phytoplankton–bacteria systems (non-axenic cultures of a dinoflagellate Apocalathium malmogiense and a cryptophyte Rhodomonas marina) in two complementary experiments. In the first experiment we grew phytoplankton and bacteria in nutrient-replete conditions and followed C processing at early exponential growth phase and twice later when the community had grown denser. Cell-specific primary production and total community respiration were up to 4 and 7 times higher, respectively, in the A. malmogiense treatments. Based on the optical signals, accumulating dissolved organic C (DOC) was degraded more in the R. marina treatments, and the rate of bacterial production to primary production was higher. Thus, the flow of C from phytoplankton to bacteria was relatively higher in R. marina treatments than in A. malmogiense treatments, which was further supported by faster 14C transfer from phytoplankton to bacterial biomass. In the second experiment we investigated consumption of the phytoplankton-derived DOC by bacteria. DOC consumption and transformation, bacterial production, and bacterial respiration were all higher in R. marina treatments. In both experiments A. malmogiense supported a bacterial community predominated by bacteria specialized in the utilization of less labile DOC (class Bacteroidia), whereas R. marina supported a community predominated by copiotrophic Alpha- and Gammaproteobacteria. Our findings suggest that large dinoflagellates cycle relatively more C between phytoplankton biomass and the inorganic C pool, whereas small cryptophytes direct relatively more C to the microbial loop.


2021 ◽  
Author(s):  
Mostafa G. Fadl ◽  
Zenat Kamel Mohamed

Abstract Cell immobilization is preferred. Immobilized cells have been traditionally used for the treatment of sewage. The techniques employed for immobilization of cells are almost the same as those used for immobilization of enzymes with appropriate modifications. Entrapment and surface attachment techniques are commonly used. Gels, and to some extent membranes, are employed. Certain microorganisms were found to amass metallic components at a high limit Was Known as Bacterial Biosorption, Potent metal biosorbents among microorganisms, at low pH esteems, cell divider ligands are protonated and contend essentially with metals for official. With expanding pH, more ligands, such as amino and carboxyl groups, could be exposed, leading to attraction between these negative charges and the metals and consequently incremental biosorption onto the cell surface. Starting with isolation and identification of heavy metal-resistant bacteria from rock ore. Studying Factors Affecting Uranium Biosorption, Optimization of bacterial growth conditions and optimum for metal uptake by free and immobilized bacterial cells. All this evidence suggest that functions groups Represented in our study are responsible for metal uptake in our bacterial biomass beside change in peaks position which assigned for its groups confirm biosorption of metal ions from waste due to ions charge interaction comparing with immobilized we found increase in no of binding sites indicate that immobilized bacterial have high efficiency for metal up take which also change in peaks position which assigned for its groups confirm biosorption of metal ions from waste due to ions charge interaction, Where the high biosorption yield obtained by bacteria.


2021 ◽  
Author(s):  
M. Fabiola Pulido-Chavez ◽  
James W. J. Randolph ◽  
Cassandra Zalman ◽  
Loralee Larios ◽  
Peter M. Homyak ◽  
...  

The rise in wildfire frequency in the western United States has increased interest in secondary succession. However, despite the role of soil microbial communities in plant regeneration and establishment, microbial secondary succession is poorly understood owing to a lack of measurements immediately post-fire and at high temporal resolution. To fill this knowledge gap, we collected soils at 2 and 3 weeks and 1, 2, 3, 4, 6, 9, and 12 months after a chaparral wildfire in Southern California. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of the 16S and ITS2 amplicons. We found that fire severely reduced bacterial biomass by 47% and richness by 46%, but the impacts were stronger for fungi, with biomass decreasing by 86% and richness by 68%. These declines persisted for the entire post-fire year, but bacterial biomass and richness oscillated in response to precipitation, whereas fungal biomass and richness did not. Fungi and bacteria experienced rapid succession, with 5-6 compositional turnover periods. As with plants, fast-growing surviving microbes drove successional dynamics. For bacteria, succession was driven by the phyla Firmicutes and Proteobacteria, with the Proteobacteria Massilia dominating all successional time points, and the Firmicutes (Domibacillus and Paenibacillus) dominating early- to mid-successional stages (1-4.5 months), while the Proteobacteria Noviherbaspirillum dominated late successional stages (4.5-1 year). For fungi, succession was driven by the phyla Ascomycota, but ectomycorrhizal basidiomycetes, and the heat-resistant yeast, Geminibasidium were present in the early successional stages (1 month). However, pyrophilous filamentous Ascomycetes Pyronema, Penicillium, and Aspergillus, dominated all post-fire time points. While wildfires vastly decrease bacterial and fungal biomass and richness, similar to plants, pyrophilous bacteria and fungi increase in abundance and experience rapid succession and compositional turnover in the first post-fire year, with potential implications for post-fire chaparral regeneration


2021 ◽  
Vol 13 (23) ◽  
pp. 13462
Author(s):  
Amal Bendouma ◽  
Zohra Houyou ◽  
Abdelaziz Gherib ◽  
Hicham Gouzi

This study proposes a new use for a paper industry waste material, lignin, in agriculture and agronomy as a fertilizer for arid soils, while following a strategy aiming to both increase the amount of organic matter in these soils and decrease the impact of pollution caused by industrial discharges that contain organic and/or inorganic pollutants generated by the paper industry. In fact, this method works to improve soil quality through a new carbon-rich bioorganic fertilizer (biolignin) that results from a green method called CIMV, a targeted depollution objective of the paper industry. Over the course of 180 days, we monitored the physicochemical and biological characteristics of degraded soils treated with three different biolignin treatments of 0 (D0), 2 (D1), and 4 (D2) g/kg. The humification was then evaluated by the equation E4/E6. A remarkable variation of the physicochemical and biological parameters was observed in D1 and D2: temperature 12–38 °C, humidity 9–29%, and pH 7.06–8.73. The C/N ratio decreased from 266 to 49. After 180 days, the improvement in soil carbon content for the three treatments D0, D1, and D2 was 14%, 19%, and 24%, respectively. A maximum bacterial biomass of 152 (CFU/g soil) was observed on the 30th day for D1. Maximum laccase activity for D2 was observed on the 120th day. D1 and D2 recorded a significant degree of humification compared to D0. The best indicator of humification E4/E6 was observed in D1, where the value reached 2.66 at the end of the treatment period. The D2 treatment showed a remarkable effect improving the fertility of the degraded soil, which confirms that biolignin is a good fertilizer.


2021 ◽  
Author(s):  
Jing Yang ◽  
Yi Lin ◽  
Christopher Rensing ◽  
Liming Zhang ◽  
Biqing Zhou ◽  
...  

Abstract. Free amino acids (FAAs) in soil play an important role in the soil nitrogen cycle and plant nutrition. However, the attributing factors and migration characteristics of free amino acid pools in paddy soils after green manure application during the entire growth period of rice have not been elucidated. In this study, a single application of chemical fertilizer (CK) was used as a control under equal nitrogen, phosphorus and potassium conditions, and different application rates of milk vetch (15 000 kghm−2(CL), 30 000 kghm−2(CM) and 45 000 kg hm−2(CH)) were selected to investigate the dynamic of FAAs concentration and composition in paddy soil. Soil FAAs concentration at different growth stages under the same fertilization treatments was highest at the seedling stage and lowest at the tillering stage. The concentration of threonine, alanine, valine, isoleucine, leucine, phenylalanine was most abundant under different fertilization treatments during the growth period, accounting for 59.42 %–76.46 % of the respective FAAs pool. The application of milk vetch was shown to increase the soil FAAs concentration, especially glutamic acid, which increased by 368.17 %–680.78 %, but excessive application had an inhibitory effect. Soil pH, organic matter, protease, bacterial biomass and community were critical factors affecting the concentration of soil FAAs. Bacteroidetes, Firmicutes and Nitrospirae significantly affected the dynamics of FAAs in bacterial communities, and their total contribution rate was 56.89 %. FAAs displayed significant vertical profile characteristics, and the mobility of serine, glycine and proline was high. Conclusively, the application of milk vetch was able to significantly change the concentration and composition of soil FAAs, which may affect the capture of N by plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Isabel Abellan-Schneyder ◽  
Andrea Janina Schusser ◽  
Klaus Neuhaus

Abstract Background One limiting factor of short amplicon 16S rRNA gene sequencing approaches is the use of low DNA amounts in the amplicon generation step. Especially for low-biomass samples, insufficient or even commonly undetectable DNA amounts can limit or prohibit further analysis in standard protocols. Results Using a newly established protocol, very low DNA input amounts were found sufficient for reliable detection of bacteria using 16S rRNA gene sequencing compared to standard protocols. The improved protocol includes an optimized amplification strategy by using a digital droplet PCR. We demonstrate how PCR products are generated even when using very low concentrated DNA, unable to be detected by using a Qubit. Importantly, the use of different 16S rRNA gene primers had a greater effect on the resulting taxonomical profiles compared to using high or very low initial DNA amounts. Conclusion Our improved protocol takes advantage of ddPCR and allows faithful amplification of very low amounts of template. With this, samples of low bacterial biomass become comparable to those with high amounts of bacteria, since the first and most biasing steps are the same. Besides, it is imperative to state DNA concentrations and volumes used and to include negative controls indicating possible shifts in taxonomical profiles. Despite this, results produced by using different primer pairs cannot be easily compared.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1486
Author(s):  
Aqel Albutti ◽  
Muhammad Shoaib Gul ◽  
Muhammad Faisal Siddiqui ◽  
Farhana Maqbool ◽  
Fazal Adnan ◽  
...  

Exploring biological agents to control biofilm is a vital alternative in combating pathogenic bacteria that cause dental plaque. This study was focused on antimicrobial, biofilm formation and biofilm dispersal efficacy of Gallic acid (GA) against bacteria, including Proteus spp., Escherichia coli, Pseudomonas spp., Salmonella spp., Streptococcus mutans, and Staphylococcus aureus and multispecies bacteria. Biofilm was qualitatively and quantitatively assessed by crystal violet assay, florescence microscopy (bacterial biomass (µm2), surface coverage (%)) and extracellular polymeric substances (EPS). It was exhibited that GA (1–200 mg/L) can reduce bacterial growth. However, higher concentrations (100–200 mg/L) markedly reduced (86%) bacterial growth and biofilm formation (85.5%), while GA did not exhibit any substantial dispersal effects on pre-formed biofilm. Further, GA (20–200 mg/L) exhibited 93.43% biomass reduction and 88.6% (p < 0.05) EPS (polysaccharide) reduction. Microscopic images were processed with BioImageL software. It was revealed that biomass surface coverage was reduced to 2% at 200 mg/L of GA and that 13,612 (µm2) biomass was present for control, while it was reduced to 894 (µm2) at 200 mg/L of GA. Thus, this data suggest that GA have antimicrobial and biofilm control potential against single and multispecies bacteria causing dental plaque.


2021 ◽  
Vol 40 ◽  
Author(s):  
Zhiyi Chen ◽  
Jianfeng He ◽  
Shunan Cao ◽  
Zhibo Lu ◽  
Musheng Lan ◽  
...  

Heterotrophic flagellates are essential components of the marine microbial food web. However, how the changes in flagellate populations reflect environmental changes in marine ecosystems is still unclear, especially in polar regions. In this study, we used pyrosequencing to examine the community structure of heterotrophic flagellates (HFs) in the Powell Basin’s surface waters of the northern Antarctic Peninsula. OTUs (operational taxonomic units) of different taxa and the correlations between community structure and environmental factors were analysed. Eight taxa of HFs were selected for the principal analysis: Telonemia, Picozoa, Rhizaria, Amoebozoa, Apusomonas, Centrohelida, Choanomonada and marine stramenopiles (MASTs). The HFs were defined as heterotrophic picoflagellates (HPFs; <3 μm) and heterotrophic nanoflagellates (HNFs; >3 μm, <20 μm), which had similar dominant phyla (MASTs and Telonemia). However, their taxonomic composition differed. Environmental factors exerted similar effects on the community structure of both HPFs and HNPs. Compared with the correlation between HPF and environmental factors, the correlation between HNF and environmental factors was stronger. Salinity, bacterial biomass and the biological interactions amongst dominant taxa were the main variables to influence the diversity and community structure of HFs.


Chemosphere ◽  
2021 ◽  
pp. 132862
Author(s):  
Efaq Noman ◽  
Adel Al-Gheethi ◽  
Radin Maya Saphira Radin Mohamed ◽  
Mohamed Al-Sahari ◽  
Md Sohrab Hossain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document