Kodamaea kakaduensisandCandida tolerans, two new ascomycetous yeast species from AustralianHibiscusflowers

1999 ◽  
Vol 45 (2) ◽  
pp. 172-177 ◽  
Author(s):  
Marc-André Lachance ◽  
Jane M Bowles ◽  
William T Starmer ◽  
J Stuart F. Barker

Two new yeast species were isolated from flowers of Hibiscus species in Eastern and Northern Australia. Kodamaea kakaduensis is heterothallic, haploid, and similar to other Kodamaea species and to Candida restingae. Buds are often produced on short protuberances, and a true mycelium is formed. The new species differs from others by the assimilation of trehalose, melezitose, and xylitol, and is reproductively isolated. The cells of Candida tolerans are small and a pseudomycelium is formed. The carbon and nitrogen assimilation pattern is reminiscent of that of Zygosaccharomyces rouxii but the two are not closely related. Sequences of the D1/D2 domain of large subunit ribosomal DNA confirm the membership of K. kakaduensis in the genus Kodamaea and indicate that C. tolerans belongs to the Clavispora-Metschnikowia clade, with a moderate relatedness to Candida mogii. The type strains are: K. kakaduensis, UWO(PS)98-119.2 (h+, holotype, CBS 8611) and UWO(PS)98-117.1 (h-, isotype, CBS 8612); and C. tolerans, UWO(PS)98-115.5 (CBS 8613).Key words: Kodamaea, Candida, new yeast species, ribosomal DNA, whole-cell PCR.

1999 ◽  
Vol 46 (1) ◽  
pp. 50-58
Author(s):  
C P Kurtzman

A new species of Pichia and two new species of Candida are described and were determined to be genetically isolated from all other currently recognized ascomycetous yeasts from their sequence divergence in the species-variable D1/D2 domain of large subunit (26S) ribosomal DNA. The three species were primarily isolated from the frass of wood-boring insects living in pine and spruce trees. The new species and their type strains are the following: Pichia ramenticola NRRL YB-1985 (CBS 8699), mating type alpha (NRRL YB-3835, CBS 8700, mating type a), Candida piceae NRRL YB-2107 (CBS 8701), and Candida wyomingensis NRRL YB-2152 (CBS 8703). Pichia ramenticola and C. piceae assimilate methanol as a carbon source; P. ramenticola is the first known heterothallic ascomycetous yeast to utilize this compound.Key words: Pichia, Candida, new yeast species, ribosomal DNA, molecular systematics, methanol utilization.


2020 ◽  
Vol 70 (8) ◽  
pp. 4458-4469
Author(s):  
Masako Takashima ◽  
Sanae Kurakado ◽  
Otomi Cho ◽  
Ken Kikuchi ◽  
Junta Sugiyama ◽  
...  

Four new yeast species belonging to the genus Apiotrichum and two new yeast species belonging to Cutaneotrichosporon are described for strains isolated from guano samples from bat-inhabited caves in Japan. In 2005, we reported these isolates as Trichosporon species based on sequence analyses of the D1/D2 domain of large subunit (LSU) rRNA genes according to available basidiomycetous yeast classification criteria; however, to date, they have not been officially published as new species with descriptions. Their phylogenetic positions have been reanalysed based on comparison of internal transcribed spacer (ITS) region sequences (including the 5.8S rRNA gene) and the D1/D2 domain of the LSU rRNA gene with those of known species; we confirmed clear separation from previously described species. Physiological and biochemical properties of the isolates also suggest their distinctiveness. Therefore, we describe Apiotrichum akiyoshidainum (holotype JCM 12595T), Apiotrichum chiropterorum (JCM 12594T), Apiotrichum coprophilum (JCM 12596T), Apiotrichum otae (JCM 12593T), Cutaneotrichosporon cavernicola (JCM 12590T) and Cutaneotrichosporon middelhovenii (JCM 12592T) as new species. C. cavernicola showed particularly distinctive morphology including large inflated anomalous cells on the hyphae and germination from the cells, although clear clamp connections on the hyphae were not confirmed. Further study is needed to elucidate the morph of this species.


2020 ◽  
Author(s):  
Mauricio Ramírez-Castrillón ◽  
Fernanda Fraga Gomes ◽  
Andrea Formoso de Souza ◽  
Belize Rodrigues Leite ◽  
Danielle Machado Pagani ◽  
...  

AbstractOne new yeast species, Papiliotrema maritimi sp. nov., is being proposed to be suitable into the Rhynchogastremataceae family, belonging to the Tremellales clade. This new species is related to six others from the Papiliotrema genus: P. taeanensis, P. siamense, P. perniciosus, P. nemorosus, P. bandonii, P. japonica and P. fuscus. The novel species is proposed based on the phylogenetic species concept through analysis of the D1/D2 region, part of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region. A total of 11 strains of Papiliotrema maritimi sp. nov. were obtained from macrophytes leaves collected in south Brazil. Papiliotrema maritimi sp. nov. differs by 12, 15, 25, 25, 25 and 29 substitutions in the D1/D2 domain from the related species P. fuscus, P. japonica, P. siamense, P. nemorosus, P. bandonii, and P. perniciosus, respectively. Concerning the ITS region, there are 11 substitutions and 52 or more substitutions when compared to P. teanensis and its closest relatives. The type strain of Papiliotrema maritimi sp. nov. is UFMG-CM-Y6048. The MycoBank number for Papiliotrema maritimi sp. nov. is MB 835603.


1998 ◽  
Vol 44 (8) ◽  
pp. 718-722 ◽  
Author(s):  
Marc-André Lachance ◽  
Carlos A Rosa ◽  
William T Starmer ◽  
Jane M Bowles

Numerous strains of an unusual asexual yeast species were isolated from flowers of morning glory (Ipomoea spp., Convolvulaceae) and associated drosophilids and sap beetles of the genus Conotelus sampled in Hawaii and in Brazil. The nutritional profile of this yeast is similar to those of Metschnikowia hawaiiensis and Metschnikowia continentalis, which share the same habitats. The cells are large, hydrophobic, and tend to remain attached after budding, causing the colonies on agar media to have a convoluted appearance, reminiscent of popcorn. The sequences of the D1/D2 domain of large subunit rDNAs of strains from three different localities confirmed that a single species is involved, and that it is related to large-spored Metschnikowia species. The type strain is UWO(PS)91-672.1 (CBS 8466).Key words: Candida ipomoeae, yeast, new species, rDNA.


1998 ◽  
Vol 44 (10) ◽  
pp. 965-973 ◽  
Author(s):  
C P Kurtzman ◽  
C J Robnett

Three new species of Candida are described that were determined to be genetically isolated from all other currently accepted ascomycetous yeasts based on their sequence divergence in the species-variable D1/D2 domain of large subunit (26S) ribosomal DNA. One of the species was isolated from an ambrosia beetle, whereas the other two were from the frass of wood-boring beetle larvae. The new species and their type strains are the following: Candida ontarioensis NRRL YB-1246 (CBS 8502), Candida tammaniensis NRRL Y-8257 (CBS 8504), and Candida trypodendroni NRRL Y-6488 (CBS 8505).Key words: Candida, new yeast species, ribosomal DNA, molecular systematics.


1997 ◽  
Vol 41 (7) ◽  
pp. 571-573 ◽  
Author(s):  
Takashi Sugita ◽  
Koichi Makimura ◽  
Akemi Nishikawa ◽  
Katsuhisa Uchida ◽  
Hideyo Yamaguchi ◽  
...  

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2006 ◽  
Vol 56 (5) ◽  
pp. 1147-1151 ◽  
Author(s):  
Carla C. C. Ruivo ◽  
Marc-André Lachance ◽  
Carlos A. Rosa ◽  
Maurício Bacci ◽  
Fernando C. Pagnocca

Strains belonging to three novel yeast species, Candida heliconiae (four isolates), Candida picinguabensis (three isolates) and Candida saopaulonensis (two isolates), were recovered in the year 2000 from water of flower bracts of Heliconia velloziana L. Emigd. (Heliconiaceae) found in a forest ecosystem site in an Atlantic rainforest of south-eastern Brazil. C. picinguabensis and C. saopaulonensis were nearly identical in morphology and physiology, but sequence divergence in the D1/D2 domain of the large-subunit rDNA indicated that they should be regarded as different species. They belong to the Metschnikowiaceae clade. C. heliconiae had affinities to Pichia mexicana and related species, but was genetically isolated from all currently accepted species in that group. The type strains are C. heliconiae UNESP 00-91C1T (=CBS 10000T=NRRL Y-27813T), C. picinguabensis UNESP 00-89T (=CBS 9999T=NRRL Y-27814T) and C. saopaulonensis UNESP 00-99T (=CBS 10001T=NRRL Y-27815T).


2020 ◽  
Vol 70 (3) ◽  
pp. 2103-2107
Author(s):  
Chin-Feng Chang ◽  
Yi-Ru Liu ◽  
Ching-Fu Lee

Four strains of anamorphic yeasts isolated from the fruiting bodies of mushrooms collected in Taiwan were found to represent two novel yeast species belonging to the genus Teunomyces, which was formally known as the Candida kruisii clade. Strains NY13M09T and NY14M14 were related to the type strains of Teunomyces panamensis, T. pallodes, T. tritomae and T. lycoperdinae, and strains GG4M07T and GG6M14 were related to T. kruisii NRRL Y-17087T and T. cretensis NRRL Y-27777T. However, strains NY13M09T and NY14M14 differed from their closest phylogenetic neighbours by 2.9–3.7 % in the D1/D2 domain sequence of the LSU rRNA gene and by 6.6–13.7 % in the internal transcribed spacer (ITS); GG4M07T and GG6M14 differed from their closest known species by 2.4 % in the D1/D2 domain sequence of the LSU rRNA gene and by 8.7–10.0 % in the ITS. Meanwhile, these strains were also clearly distinguished from their closest relatives based on the results of physiological tests. Based on the characteristics described above, the strains could be regarded as representing two novel species of the genus Teunomyces, for which the names Teunomyces basidiocarpi sp. nov. and Teunomyces luguensis sp. nov. are proposed. The holotypes are Teunomyces basidiocarpi BCRC 23475T and Teunomyces luguensis BCRC 23476T.


2020 ◽  
Vol 70 (12) ◽  
pp. 6307-6312
Author(s):  
João Drumonde-Neves ◽  
Neža Čadež ◽  
Yazmid Reyes-Domínguez ◽  
Andreas Gallmetzer ◽  
Dorit Schuller# ◽  
...  

During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S–ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).


Sign in / Sign up

Export Citation Format

Share Document