Aboveground organic matter and production of a montane forest on the eastern slopes of the Washington Cascade Range

1989 ◽  
Vol 19 (4) ◽  
pp. 515-518 ◽  
Author(s):  
Stith T. Gower ◽  
Charles C. Grier

Aboveground biomass and production were determined for a 70-year-old mixed conifer forest of western larch (Larixoccidentalis Nutt.), lodgepole pine (Pinuscontorta Dougl. var. latifolia Engelm.), and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) on the eastern slopes of the Cascade Range in Washington state. Live aboveground biomass, projected leaf area, and aboveground net primary production for the mixed conifer forest were 194 Mg•ha−1, 4.2 m−2•m−2, and 6.1 Mg•ha−1•year−1, respectively. Based on the few studies of montane forests on the eastern slope of the Cascades, aboveground biomass, leaf area index, and aboveground net primary production of these forests are more similar to those of montane coniferous forests in the Rocky Mountains than to those of similar forests located on the western slopes of the Cascades.


Ecosystems ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Rebecca A. Reed ◽  
Mary Ellen Finley ◽  
William H. Romme ◽  
Monica G. Turner


1997 ◽  
Vol 18 (16) ◽  
pp. 3459-3471 ◽  
Author(s):  
S. E. Franklin ◽  
M. B. Lavigne ◽  
M. J. Deuling ◽  
M. A. Wulder ◽  
E. R. Hunt


Author(s):  
Monica Turner ◽  
Rebecca Reed ◽  
William Romme ◽  
Mary Finley ◽  
Dennis Knight

The 1988 fires in Yellowstone National Park (YNP), Wyoming, affected >250,000 ha, creating a striking mosaic of burn severities across the landscape which is likely to influence ecological processes for decades to come (Christensen et al. 1989, Knight and Wallace 1989, Turner et al.1994). Substantial spatial heterogeneity in early post-fire succession has been observed in the decade since the fires, resulting largely from spatial variation in fire severity and in the availability of lodgepole pine (Pinus contorta var. latifolia) seeds in or near the burned area (Anderson and Romme 1991, Tinker et al. 1994, Turner et al. 1997). Post­fire vegetation now includes pine stands ranging from relatively low to extremely high pine sapling density (ca 10,000 to nearly 100,000 stems ha-1) as well as non-forest or marginally forested vegetation across the Yellowstone landscape may influence ecosystem processes related to energy flow and biogeochemisty. We also are interested in how quickly these processes may return to their pre­ disturbance characteristics. In this pilot study, we began to address these general questions by examining the variation in above-ground net primary production (ANPP), leaf area index (LAI) of tree (lodgepole pine) and herbaceous components, and rates of nitrogen mineralization and loss in successional stands 9 years after the fires. ANPP measures the cumulative new biomass generated over a given period of time, and is a fundamental ecosystem property often used to compare ecosystems (Carpenter 1998). Leaf area (typically expressed as leaf area index [LAI], i.e., leaf area per unit ground surface area) influences rates of two fundamental ecosystem processes -­ primary productivity and transpiration -- and is communities (



2016 ◽  
Vol 363 ◽  
pp. 74-85 ◽  
Author(s):  
Catherine Airey Lauvaux ◽  
Carl N. Skinner ◽  
Alan H. Taylor


2021 ◽  
Author(s):  
Brandon M. Collins ◽  
Alexis Bernal ◽  
Robert A. York ◽  
Jens T. Stevens ◽  
Andrew Juska ◽  
...  


2018 ◽  
Author(s):  
Qianyu Li ◽  
Xingjie Lu ◽  
Yingping Wang ◽  
Xin Huang ◽  
Peter M. Cox ◽  
...  

Abstract. The concentration-carbon feedback factor (β), also called the CO2 fertilization effect, is a key unknown in climate-carbon cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO2 is urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We calculated CO2 fertilization effects at various hierarchical levels from leaf biochemical reaction, leaf photosynthesis, canopy gross primary production (GPP), net primary production (NPP), to ecosystem carbon storage (cpool), for seven C3 vegetation types in response to increasing CO2 under RCP 8.5 scenario, using the Community Atmosphere Biosphere Land Exchange model (CABLE). Our results show that coefficient of variation (CV) for the CABLE model among the seven vegetation types is 0.15–0.13 for the biochemical level β, 0.13–0.16 for the leaf-level β, 0.48 for the βGPP, 0.45 for the βNPP, and 0.58 for the βcpool. The low variation of the leaf-level β is consistent with a theoretical analysis that leaf photosynthetic sensitivity to increasing CO2 concentration is almost an invariant function. In CABLE, the major jump in CV of β values from leaf- to canopy- and ecosystem-levels results from divergence in modelled leaf area index (LAI) within and among the vegetation types. The correlations of βGPP, βNPP, or βcpool with βLAI are very high in CABLE. Overall, our results indicate that modelled LAI is a key factor causing the divergence in β values in CABLE model. It is therefore urgent to constrain processes that regulate LAI dynamics in order to better represent the response of ecosystem productivity to increasing CO2 in Earth System Models.



2003 ◽  
Vol 33 (10) ◽  
pp. 2007-2018 ◽  
Author(s):  
S N Burrows ◽  
S T Gower ◽  
J M Norman ◽  
G Diak ◽  
D S Mackay ◽  
...  

Quantifying forest net primary production (NPP) is critical to understanding the global carbon cycle because forests are responsible for a large portion of the total terrestrial NPP. The objectives of this study were to measure above ground NPP (NPPA) for a land surface in northern Wisconsin, examine the spatial patterns of NPPA and its components, and correlate NPPA with vegetation cover types and leaf area index. Mean NPPA for aspen, hardwoods, mixed forest, upland conifers, nonforested wetlands, and forested wetlands was 7.8, 7.2, 5.7, 4.9, 5.0, and 4.5 t dry mass·ha–1·year–1, respectively. There were significant (p = 0.01) spatial patterns in wood, foliage, and understory NPP components and NPPA (p = 0.03) when the vegetation cover type was included in the model. The spatial range estimates for the three NPP components and NPPA differed significantly from each other, suggesting that different factors are influencing the components of NPP. NPPA was significantly correlated with leaf area index (p = 0.01) for the major vegetation cover types. The mean NPPA for the 3 km × 2 km site was 5.8 t dry mass·ha–1·year–1.



1985 ◽  
Vol 15 (2) ◽  
pp. 400-409 ◽  
Author(s):  
Henry L. Gholz ◽  
Glenn M. Hawk ◽  
Alsie Campbell ◽  
Kermit Cromack Jr. ◽  
Alfred T. Brown

Aboveground biomass and leaf area, net primary production, and nutrient cycling through vegetation were studied for 3 years after clear-cutting (stems only) of a 10.24-ha watershed in the Oregon Cascade Mountains. The riparian zone and four main habitats were analyzed separately. In 3 years, aboveground net primary production increased from 5 to 112 g•m−2•year−1 in the ridgetop habitat; midsummer aboveground biomass increased from 8 to 196 g/m2 in the riparian zone and from 198 to 327 g/m2 on the ridgetop. Other values were intermediate to these. Litter fall of species with perennial aboveground parts averaged 20–27% of standing biomass. Native annuals, especially Araliacalifornica Wats., dominated the riparian zone. Seneciosylvaticus L., an introduced species, dominated most of the rest of the watershed, except for the ridgetop habitat, which was dominated by residual woody shrubs. Uptake of N exceeded losses in streamflow the 1st year and was six times greater in the 2nd; uptake of P and K in that year was 2.5 and 3 times greater than losses. In the 3rd year, total uptake of K (2.5 g•m−2•year−1) equaled the preclear-cutting level, and uptake of N (1.3 g•m−2•year−1) and P (0.3 g•m−2•year−1) was about half that level. No correlation was found between plant uptake and nutrient loss in streamflow. Uptake of all elements exceeded return through leaching and litter fall by 16%, except that of Mg, which exceeded return by 44%. Because of early dominance by species with annuals, the proportion of elements redistributed internally by vegetation was generally low. The amount of nutrients in flux through vegetation, atmosphere, and stream was small in comparison to the amount lost in the removal of tree stems.



Sign in / Sign up

Export Citation Format

Share Document