co2 fertilization
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 56)

H-INDEX

28
(FIVE YEARS 5)

Nature ◽  
2021 ◽  
Vol 600 (7888) ◽  
pp. 224-225
Author(s):  
Chris Huntingford ◽  
Rebecca J. Oliver

2021 ◽  
Author(s):  
Xueyan Zhang ◽  
Jiming Jin ◽  
Xubin Zeng ◽  
Wuchao Yang ◽  
Charles P Hawkins ◽  
...  

2021 ◽  
Author(s):  
Ruqi Yang ◽  
Jun Wang ◽  
Ning Zeng ◽  
Stephen Sitch ◽  
Wenhan Tang ◽  
...  

Abstract. Understanding historical changes in gross primary productivity (GPP) is essential for better predicting the future global carbon cycle. However, the historical trends of terrestrial GPP, owing to the CO2 fertilization effect, climate, and land-use change, remain largely uncertain. Using long-term satellite-based near-infrared radiance of vegetation (NIRv), a proxy for GPP, and multiple GPP datasets derived from satellite-based products, Dynamic Global Vegetation Model (DGVM) simulations, and machine learning techniques, here we comprehensively investigated their trends and analyzed the causes for any discrepancies during 1982–2015. Although spatial patterns of climatological annual GPP from all products and NIRv are highly correlated (r  > 0.84), the spatial correlation coefficients of trends between DGVM GPP and NIRv significantly decreased (with the ensemble mean of r = 0.49) and even the spatial correlation coefficients of trends between other GPP products and NIRv became negative. By separating the global land into the tropics plus extra-tropical southern hemisphere (Trop+SH) and extra-tropical northern hemisphere (NH), we found that, during 1982–2015, simulated GPP from most of the models showed a stronger increasing trend over Trop+SH than NH. In contrast, the satellite-based GPP products indicated a substantial increase over NH. Mechanistically, model sensitivity experiments indicated that the increase of annual GPP was dominated by the CO2 fertilization effect (Global: 83.9 %), albeit a large uncertainty in magnitude among individual simulations. However, the spatial distribution of inter-model spreads of GPP trends resulted mainly from climate and land-use change rather than CO2 fertilization effect. Trends after 2000 were different from the full time-series, showing that satellite-based GPP products suggested weakened rising trends over NH and even significantly decreasing trends over Trop+SH, while the trends from DGVMs kept increasing. The inconsistencies are very likely caused by the contrasting performances between satellite-derived and DGVM simulated vegetation structure parameter (leaf area index, LAI). Therefore, the uncertainty in satellite-based GPP products induced by highly uncertain LAI data in the tropics undermines their roles in assessing the performance of DGVM simulations and understanding the changes of global carbon sinks.


2021 ◽  
Vol 18 (17) ◽  
pp. 4985-5010 ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Alexis Hannart ◽  
Stephen Sitch ◽  
Vanessa Haverd ◽  
...  

Abstract. Satellite data reveal widespread changes in Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climate change, and consequent disturbances such as fires and droughts, are hypothesized to be key drivers of changes in natural vegetation. A rigorous regional attribution at the biome level that can be scaled to a global picture of what is behind the observed changes is currently lacking. Here we analyze different datasets of decades-long satellite observations of global leaf area index (LAI, 1981–2017) as well as other proxies for vegetation changes and identify several clusters of significant long-term changes. Using process-based model simulations (Earth system and land surface models), we disentangle the effects of anthropogenic carbon emissions on LAI in a probabilistic setting applying causal counterfactual theory. The analysis prominently indicates the effects of climate change on many biomes – warming in northern ecosystems (greening) and rainfall anomalies in tropical biomes (browning). The probabilistic attribution method clearly identifies the CO2 fertilization effect as the dominant driver in only two biomes, the temperate forests and cool grasslands, challenging the view of a dominant global-scale effect. Altogether, our analysis reveals a slowing down of greening and strengthening of browning trends, particularly in the last 2 decades. Most models substantially underestimate the emerging vegetation browning, especially in the tropical rainforests. Leaf area loss in these productive ecosystems could be an early indicator of a slowdown in the terrestrial carbon sink. Models need to account for this effect to realize plausible climate projections of the 21st century.


2021 ◽  
Author(s):  
Sami W. Rifai ◽  
Martin G. De Kauwe ◽  
Anna M. Ukkola ◽  
Lucas A. Cernusak ◽  
Patrick Meir ◽  
...  

Abstract. Climate change is projected to increase the imbalance between the supply (precipitation) and atmospheric demand for water (i.e. increased potential evapotranspiration), stressing plants in water-limited environments. Plants may be able to offset increasing aridity because rising CO2 increases water-use-efficiency. CO2 fertilization has also been cited as one of the drivers of the widespread ‘greening’ phenomenon. However, attributing the size of this CO2 fertilization effect is complicated, due in part to a lack of long-term vegetation monitoring and interannual to decadal-scale climate variability. In this study we asked the question, how much has CO2 contributed towards greening? We focused our analysis on a broad aridity gradient spanning eastern Australia’s woody ecosystems. Next we analysed 38-years of satellite remote sensing estimates of vegetation greenness (normalized difference vegetation index, NDVI) to examine the role of CO2 in ameliorating climate change impacts. Multiple statistical techniques were applied to separate the CO2-attributable effects on greening from the changes in water supply and atmospheric aridity. Widespread vegetation greening occurred despite a warming climate, increases in vapor pressure deficit, and repeated record-breaking droughts and heatwaves. Between 1982–2019 we found that NDVI increased (median 11.3 %) across 90.5 % of the woody regions. After masking disturbance effects (e.g. fire), we statistically estimated an 11.7 % increase in NDVI attributable to CO2, broadly consistent with a hypothesized theoretical expectation of an 8.6 % increase in water-use-efficiency due to rising CO2. In contrast to reports of a weakening CO2 fertilization effect, we found no consistent temporal change in the CO2 effect. We conclude rising CO2 has mitigated the effects of increasing aridity, repeated record-breaking droughts, and record-breaking heat waves in eastern Australia. However, we were unable to determine whether trees or grasses were the primary beneficiary of the CO2 induced change in water-use-efficiency, which has implications for projecting future ecosystem resilience. A more complete understanding of how CO2 induced changes in water-use-efficiency affect trees and non-tree vegetation is needed.


2021 ◽  
Vol 18 (13) ◽  
pp. 4005-4020
Author(s):  
Wu Ma ◽  
Lu Zhai ◽  
Alexandria Pivovaroff ◽  
Jacquelyn Shuman ◽  
Polly Buotte ◽  
...  

Abstract. Live fuel moisture content (LFMC) plays a critical role in wildfire dynamics, but little is known about responses of LFMC to multivariate climate change, e.g., warming temperature, CO2 fertilization, and altered precipitation patterns, leading to a limited prediction ability of future wildfire risks. Here, we use a hydrodynamic demographic vegetation model to estimate LFMC dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. We parameterize the model based on observed shrub allometry and hydraulic traits and evaluate the model's accuracy through comparisons between observed and simulated LFMC of three plant functional types (PFTs) under current climate conditions. Moreover, we estimate the number of days per year of LFMC below 79 % (which is a critical threshold for wildfire danger rating of southern California chaparral shrubs) from 1960 to 2099 for each PFT and compare the number of days below the threshold for medium and high greenhouse gas emission scenarios (RCP4.5 and 8.5). We find that climate change could lead to more days per year (5.2 %–14.8 % increase) with LFMC below 79 % between the historical (1960–1999) and future (2080–2099) periods, implying an increase in wildfire danger for chaparral shrubs in southern California. Under the high greenhouse gas emission scenario during the dry season, we find that the future LFMC reductions mainly result from a warming temperature, which leads to 9.1 %–18.6 % reduction in LFMC. Lower precipitation in the spring leads to a 6.3 %–8.1 % reduction in LFMC. The combined impacts of warming and precipitation change on fire season length are equal to the additive impacts of warming and precipitation change individually. Our results show that the CO2 fertilization will mitigate fire risk by causing a 3.5 %–4.8 % increase in LFMC. Our results suggest that multivariate climate change could cause a significant net reduction in LFMC and thus exacerbate future wildfire danger in chaparral shrub systems.


2021 ◽  
Vol 18 (9) ◽  
pp. 2957-2979
Author(s):  
Dushyant Kumar ◽  
Mirjam Pfeiffer ◽  
Camille Gaillard ◽  
Liam Langan ◽  
Simon Scheiter

Abstract. South Asian vegetation provides essential ecosystem services to the 1.7 billion inhabitants living in the region. However, biodiversity and ecosystem services are threatened by climate and land-use change. Understanding and assessing how ecosystems respond to simultaneous increases in atmospheric CO2 and future climate change is of vital importance to avoid undesired ecosystem change. Failed reaction to increasing CO2 and climate change will likely have severe consequences for biodiversity and humankind. Here, we used the adaptive dynamic global vegetation model version 2 (aDGVM2) to simulate vegetation dynamics in South Asia under RCP4.5 and RCP8.5, and we explored how the presence or absence of CO2 fertilization influences vegetation responses to climate change. Simulated vegetation under both representative concentration pathways (RCPs) without CO2 fertilization effects showed a decrease in tree dominance and biomass, whereas simulations with CO2 fertilization showed an increase in biomass, canopy cover, and tree height and a decrease in biome-specific evapotranspiration by the end of the 21st century. The predicted changes in aboveground biomass and canopy cover triggered transition towards tree-dominated biomes. We found that savanna regions are at high risk of woody encroachment and transitioning into forest. We also found transitions of deciduous forest to evergreen forest in the mountain regions. Vegetation types using C3 photosynthetic pathway were not saturated at current CO2 concentrations, and the model simulated a strong CO2 fertilization effect with the rising CO2. Hence, vegetation in the region has the potential to remain a carbon sink. Projections showed that the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and elevated CO2. The results of our study help to understand the regional climate–vegetation interactions and can support the development of regional strategies to preserve ecosystem services and biodiversity under elevated CO2 and climate change.


Sign in / Sign up

Export Citation Format

Share Document