Cavity trees and coarse woody debris in old-growth and managed northern hardwood forests in Wisconsin and Michigan

1998 ◽  
Vol 28 (3) ◽  
pp. 427-438 ◽  
Author(s):  
John M Goodburn ◽  
Craig G Lorimer

The effects of uneven-aged management on the availability of coarse woody debris habitat were examined in northern hardwood forests (with and without a hemlock component) in north-central Wisconsin and adjacent western Upper Michigan. Snags, cavity trees, fallen wood, and recent tip-up mounds in 15 managed uneven-aged (selection) stands were compared with levels in 10 old-growth stands and six unmanaged even-aged second-growth stands. Amounts of coarse woody debris in selection stands were generally intermediate between old-growth and even-aged stands. Density of snags >30 cm DBH in northern hardwood selection stands averaged 12/ha, approximately double that found in even-aged northern hardwoods, but only 54% of the level in old-growth northern hardwoods. Highest densities of snags >30 cm DBH occurred in old-growth hemlock-hardwood stands, averaging over 40 snags/ha. For combined forest types, the volume of fallen wood (>10 cm in diameter) was significantly lower in selection stands (60 m3/ha) and even-aged stands (25 m3/ha) than in old-growth stands (99 m3/ha). Volume differences were even more pronounced for large-diameter debris (>40 cm). Cavity tree density in selection stands averaged 11 trees/ha, 65% of the mean number in old-growth stands. Densities of snags (>30 cm DBH) and large-diameter cavity trees (>45 cm) present in selection stands exceeded current guidelines for wildlife tree retention on public forests.

2000 ◽  
Vol 30 (9) ◽  
pp. 1453-1462 ◽  
Author(s):  
Gregory G McGee

The objective of this study was to adjust previously published estimates of coarse woody debris (CWD) volume and basal areas in northern hardwood forests to account for elevated CWD inputs due to beech bark disease (a disease complex of the scale insect, Cryptococcus fagisuga Lindinger, and a fungus, Nectria spp., on American beech, Fagus grandifolia Ehrh.). Ratios of snags/live tree densities and downed CWD volume/live tree basal area were compared between beech and the codominant, shade-tolerant sugar maple (Acer saccharum Marsh.). The differences between the beech and the sugar maple ratios were used to define the elevated mortality from beech bark disease. Estimated volumes of downed CWD (stumps [Formula: see text] 1.0 m tall and logs), adjusted for effects of beech bark disease, were 108 ± 18 and 48 ± 11 m3·ha-1in old-growth and even-aged, 90- to 100-year-old maturing stands, respectively, representing reductions of 22 and 21%, respectively, compared with observed volumes. Similarly, snag densities were adjusted from 59.7 ± 21.7 to 41.1 ± 26.3 per hectare in the old-growth stands and from 96.3 ± 48.0 to 87.3 ± 46.5 per hectare in the maturing stands. Snag basal areas were reduced 21 and 17% from their observed values to 6.8 ± 3.5 and 3.5 ± 0.6 m2·ha-1in the old-growth and maturing stands, respectively. The adjusted CWD estimates presented here are more historically accurate and ecologically meaningful than previous observations made in diseased northern hardwood forests and, therefore, provide more appropriate target levels for managing CWD in these forest types.


Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 541-554
Author(s):  
Adam Gorgolewski ◽  
Philip Rudz ◽  
Trevor Jones ◽  
Nathan Basiliko ◽  
John Caspersen

2002 ◽  
Vol 32 (9) ◽  
pp. 1562-1576 ◽  
Author(s):  
Gregory G McGee ◽  
Robin W Kimmerer

The objective of this study was to assess the influence of substrate heterogeneity on epiphytic bryophyte communities in northern hardwood forests of varying disturbance histories. Specifically, we compared bryophyte abundance (m2·ha–1) and community composition among partially cut; maturing, 90- to 100-year-old, even-aged; and old-growth northern hardwood stands in Adirondack Park, New York, U.S.A. Total bryophyte cover from 0 to 1.5 m above ground level on trees [Formula: see text]10 cm diameter at breast height (DBH) did not differ among the three stand types. However, bryophyte community composition differed among host tree species and among stand types. Communities in partially cut and maturing stands were dominated by xerophytic bryophytes (Platygyrium repens, Frullania eboracensis, Hypnum pallescens, Brachythecium reflexum, Ulota crispa), while old-growth stands contained a greater representation of calcicoles and mesophytic species (Brachythecium oxycladon, Anomodon rugelii, Porella platyphylloidea, Anomodon attenuatus, Leucodon brachypus, Neckera pennata). This mesophyte-calcicole assemblage occurred in all stand types but was limited by the abundance of large-diameter (>50 cm DBH), thick-barked, hardwood host trees (Acer saccharum Marsh., Tilia americana L., Fraxinus americana L.). This study suggested that epiphytic bryophyte diversity can be sustained and enhanced in managed northern hardwood forests by maintaining host tree species diversity and retaining large or old, thick-barked residual hardwood stems when applying even-aged and uneven-aged silviculture systems.


Ecology ◽  
1964 ◽  
Vol 45 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Edward Flaccus ◽  
Lewis F. Ohmann

1994 ◽  
Vol 24 (10) ◽  
pp. 1989-1996 ◽  
Author(s):  
Glenn H. Stewart ◽  
Larry E. Burrows

The volume, biomass, and carbon and nitrogen content of coarse woody debris were measured on three 1-ha reference plots in old-growth Nothofagusfusca (Hook. f.) Oerst.–Nothofagusmenziesii (Hook. f.) Oerst. forest on the South Island of New Zealand. Two decay sequences for logs and one for standing dead trees (snags) were recognised from two-way indicator species analysis (TWINSPAN) of up to 30 variables related to physical characteristics and structural integrity. Wood volume (up to 800 m3•ha−1) and biomass were high (up to 300 Mg•ha−1), and the inside-out decay sequence from heartwood to sapwood was unusual compared with that of other temperate hardwood forests. Coarse woody debris represented significant carbon and nitrogen pools, with ca. 150 Mg•ha−1 and 370 kg•ha−1, respectively, in one stand. The coarse woody debris component of these broad-leaved evergreen hardwood forests was much higher than that reported for other temperate hardwood forests and approaches that of many northern hemisphere conifer forests. The large coarse woody debris pools are discussed in relation to live stand biomass, natural disturbances and tree mortality, and decomposition processes.


1986 ◽  
Vol 16 (2) ◽  
pp. 335-339 ◽  
Author(s):  
Jeffery A. Gore ◽  
William A. Patterson III

Downed (i.e., fallen, dead) wood was sampled in 1-, 15-, 50-, and 100-year-old managed stands, an uneven-aged, managed stand, and an uncut stand of northern hardwoods in New Hampshire. Mass of downed wood ranged from a mean of 32 t/ha in the 15- and 50-year-old stands to 86 t/ha in the recently cut stand. Mean estimates varied significantly among stands, although most of the variation was due to the large amount of downed wood in the recently cut stand. The range of downed-stem diameters was greatest in the 100-year-old and uncut stands. Large (>38 cm) logs were notably absent from the uneven-aged, managed stand, indicating that selective cutting utilizes mature stems efficiently. Comparison of our data with other estimates shows that the amount of downed wood in northern hardwood stands declines to about 20 t/ha within 20–30 years after logging. Quantities remain relatively stable for up to an additional 30 years and then begin to increase. They stabilize at 35–40 t/ha after approximately 100 years. Large-diameter logs become an increasingly important component of downed wood as stands mature beyond 50 years of age. Rapid decomposition of even the largest logs precludes continued accumulation of downed wood in uncut, old-growth stands. The data suggest that less downed wood and fewer large-diameter logs are likely to accumulate under short-rotation (<50 years) harvest, whole-tree harvests, and selection cuts than under long rotations or in uncut forests.


1992 ◽  
Vol 22 (11) ◽  
pp. 1807-1813 ◽  
Author(s):  
Jeffrey Neal Niese ◽  
Terry F. Strong

Forest ecologists have long believed that greater tree species diversity in hardwood forests reduces biological risk, but researchers have not yet linked diversification with economic returns for managed hardwood forests. This paper shows how management of northern hardwood forests affects tree species diversity and economic returns. Shannon's index is used to measure regeneration diversity for eight even- and uneven-aged cutting methods from a 40-year study on the Argonne Experimental Forest. These indices of tree species diversity are compared with the potential economic returns for the research sites.


2007 ◽  
Vol 139 (1) ◽  
pp. 118-130 ◽  
Author(s):  
Rebecca M. Zeran ◽  
Robert S. Anderson ◽  
Terry A. Wheeler

AbstractFungivorous Coleoptera were sampled from old-growth and managed (selectively logged in 1999) hemlock–hardwood forests in southeastern Ontario to examine the effect of small-scale forest management on fungivore diversity in forest fragments. Sampling using flight-intercept traps and trunk-window traps for 22 weeks in 2003 yielded 11 888 beetles representing 73 species in 11 target families (Anthribidae, Cerylonidae, Endomychidae, Erotylidae, Leiodidae, Mycetophagidae, Scaphidiidae, Sphindidae, Tenebrionidae, Trogossitidae, and Zopheridae). The leiodid subfamily Leiodinae was the dominant taxon (10 386 individuals, 38 species). While old-growth stands had no recent logging and had higher volumes of coarse woody debris, species diversity and composition of fungivorous Coleoptera were similar between forest types, suggesting that the stand differences measured (recent logging history, volume of coarse woody debris) did not have a significant effect on beetle diversity in this study. Indicator species analysis showed that Triplax macra LeConte (Erotylidae) was strongly associated with old-growth stands, while Anisotoma blanchardi (Horn), Anogdus obsoletus (Melsheimer), Agathidium sp. 1 (Leiodidae), and Mycetina perpulchra (Newman) (Endomychidae) were associated with managed stands. The lack of difference observed between stand types may be related to the small size of the forest fragments or the relatively small scale of the disturbance.


2003 ◽  
Vol 79 (3) ◽  
pp. 632-644 ◽  
Author(s):  
Bruce J Stewart ◽  
Peter D Neily ◽  
Eugene J Quigley ◽  
Lawrence K Benjamin

A study of four old-growth stands in Nova Scotia was conducted to document the ecological characteristics of these currently rare Acadian forest ecosystems. Stands were selected to represent the two dominant climax forest types, hemlock–red spruce–eastern white pine, and sugar maple–yellow birch–beech. Data include measurements of age structure, species composition, diameter distribution, basal area, height, coarse woody debris, snags, vertical structure, and canopy condition. All stands were determined to be uneven-aged. Old-growth reference ages calculated for the stands ranged from 164 to 214 years. All stands displayed broad diameter distributions that had peak basal area representation in the 40- to 50-cm diameter classes. Volumes of dead wood ranged from 111 to 148 m3/ha in the softwood stands and from 63 to 83m3/ha in the hardwood stands. Dead wood consisted of approximately one-third snags and two thirds downed coarse woody debris. Measurements from the stands were used to evaluate Nova Scotia's recently developed Old Forest Scoring System. Six stand attributes were rated for a maximum score of 100: stand age, primal value, number of large-diameter trees, length of large-diameter dead wood, canopy structure, and understorey structure. Based on the age attribute, three of the four stands were classed as Mature Old Growth and one was very close, indicating that all are in the shifting mosaic stage of late forest succession. The scores for all stands were relatively high, ranging from 75 to 85, as would be expected from some of the best old-growth stands in the province. Key words: old growth, climax, primal, late succession, uneven-aged, scoring, coarse woody debris, age structure, diameter, Acadian forest, northern hardwood, red spruce, eastern hemlock, white pine, sugar maple, yellow birch, American beech


Sign in / Sign up

Export Citation Format

Share Document