Effects and consequences of nerve injury on the electrical properties of sensory neurons

2003 ◽  
Vol 81 (7) ◽  
pp. 663-682 ◽  
Author(s):  
Fuad A Abdulla ◽  
Timothy D Moran ◽  
Sridhar Balasubramanyan ◽  
Peter A Smith

Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic or "noninflammatory" pain, which results from injury to the nervous system, serves no useful purpose. It typically continues for years after the original injury has healed. Sciatic nerve lesions can invoke chronic neuropathic pain that is accompanied by persistent, spontaneous activity in primary afferent fibers. This activity, which reflects changes in the properties and functional expression of Na+, K+, and Ca2+ channels, initiates a further increase in the excitability of second-order sensory neurons in the dorsal horn. This change persists for many weeks. The source of origin of the pain thus moves from the peripheral to the central nervous system. We hypothesize that this centralization of pain involves the inappropriate release of peptidergic neuromodulators from primary afferent fibers. Peptides such as substance P, neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), and brain-derived neurotrophic factor (BDNF) may promote enduring changes in excitability as a consequence of neurotrophic actions on ion channel expression in the dorsal horn. Findings that form the basis of this hypothesis are reviewed. Study of the neurotrophic control of ion channel expression by spinal peptides may thus provide new insights into the etiology of neuropathic pain.Key words: neuropathic pain, spinal cord injury, allodynia, dorsal root ganglion, axotomy.

1999 ◽  
Vol 81 (4) ◽  
pp. 1636-1644 ◽  
Author(s):  
H. Richard Koerber ◽  
Karoly Mirnics ◽  
Anahid M. Kavookjian ◽  
Alan R. Light

Ultrastructural analysis of ectopic synaptic boutons arising from peripherally regenerated primary afferent fibers. The central axons of peripherally regenerated Aβ primary sensory neurons were impaled in the dorsal columns of α-chloralose-anesthetized cats 9–12 mo after axotomy. The adequate peripheral stimulus was determined, and the afferent fibers intracellularly stimulated while simultaneously recording the resulting cord dorsum potentials (CDPs). Fibers that successfully had reinnervated the skin responded to light tactile stimulation, and evoked CDPs that suggested dorsally located boutons were stained intracellularly with horseradish peroxidase (HRP). Two HRP-stained regenerated Aβ afferent fibers were recovered that supported large numbers of axon collaterals and swellings in laminae I, IIo, and IIi. Sections containing the ectopic collateral fibers and terminals in the superficial dorsal horn were embedded in plastic. Analyses of serial ultrathin sections revealed that ectopic projections from both regenerated fibers supported numerous synaptic boutons filled with clear round vesicles, a few large dense core vesicles (LDCVs) and several mitochondria (>3). All profiles examined in serial sections (19) formed one to three asymmetric axo-dendritic contacts. Unmyelinated portions of ectopic fibers giving rise to en passant and terminal boutons often contained numerous clear round vesicles. Several boutons (47%) received asymmetric contacts from axon terminals containing pleomorphic vesicles. These results strongly suggest that regenerated Aβ fibers activated by light tactile stimuli support functional connections in the superficial dorsal horn that have distinct ultrastructural features. In addition, the appearance of LDCVs suggests that primary sensory neurons are capable of changing their neurochemical phenotype.


2021 ◽  
Vol 22 (1) ◽  
pp. 414
Author(s):  
Antonella Comitato ◽  
Rita Bardoni

Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.


1998 ◽  
Vol 80 (6) ◽  
pp. 3356-3360 ◽  
Author(s):  
Ping Li ◽  
Amelita A. Calejesan ◽  
Min Zhuo

Li, Ping, Amelita A. Calean, and Min Zhuo. ATP P2× receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 80: 3356–3360, 1998. Glutamate is a major fast transmitter between primary afferent fibers and dorsal horn neurons in the spinal cord. Recent evidence indicates that ATP acts as another fast transmitter at the rat cervical spinal cord and is proposed to serve as a transmitter for nociception and pain. Sensory synaptic transmission between dorsal root afferent fibers and neurons in the superficial dorsal horn of the lumbar spinal cord were examined by whole cell patch-clamp recording techniques. Experiments were designed to test if ATP could serve as a transmitter at the lumbar spinal cord. Monosynaptic excitatory postsynaptic currents (EPSCs) were completely abolished after the blockade of both glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and N-methyl-d-aspartate receptors. No residual current was detected, indicating that glutamate but not ATP is a fast transmitter at the dorsal horn of the lumbar spinal cord. Pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), a selective P2× receptor antagonist, produced an inhibitory modulatory effect on fast EPSCs and altered responses to paired-pulse stimulation, suggesting the involvement of a presynaptic mechanism. Intrathecal administration of PPADS did not produce any antinociceptive effect in two different types of behavioral nociceptive tests. The present results suggest that ATP P2×2 receptors modulate excitatory synaptic transmission in the superficial dorsal horn of the lumbar spinal cord by a presynaptic mechanism, and such a mechanism does not play an important role in behavioral responses to noxious heating. The involvement of other P2× subtype receptors, which is are less sensitive to PPADS, in acute nociceptive modulation and persistent pain remains to be investigated.


Sign in / Sign up

Export Citation Format

Share Document