THE METABOLISM OF VALERATE-2-C14 BY UREDOSPORES OF WHEAT STEM RUST

1963 ◽  
Vol 41 (1) ◽  
pp. 1-7 ◽  
Author(s):  
H. Reisener ◽  
A. J. Finlayson ◽  
W. B. McConnell

When uredospores of Puccinia graminis var. tritici race 15B were shaken in a medium containing M/30 phosphate buffer, pH 6.2, and valerate-2-C14, about 88% of the radioactivity was removed from the buffer solution in a period of 3 hours. About 40% of the carbon-14 taken from the buffer was found in a water-soluble extract of the spores and about 15% was respired as carbon dioxide. The result is compared with an earlier report that carbon 1 of valerate is more extensively released as carbon dioxide and less extensively incorporated into spore components. Glutamic acid, glutamine, γ-aminobutyric acid, and alanine of high specific activity were isolated. It was estimated from partial degradation that more than one-half of the carbon-14 of glutamic acid occurred in position 4 and that carbon 5 was very weakly labelled. Citric acid was also of high specific activity and was labelled predominantly in the internal carbons.It is concluded that respiring rust spores utilize externally supplied valerate by β-oxidation, which releases carbons 1 and 2 in a form which is metabolized as acetate by the tricarboxylic acid cycle.

1963 ◽  
Vol 41 (1) ◽  
pp. 1-7 ◽  
Author(s):  
H. Reisener ◽  
A. J. Finlayson ◽  
W. B. McConnell

When uredospores of Puccinia graminis var. tritici race 15B were shaken in a medium containing M/30 phosphate buffer, pH 6.2, and valerate-2-C14, about 88% of the radioactivity was removed from the buffer solution in a period of 3 hours. About 40% of the carbon-14 taken from the buffer was found in a water-soluble extract of the spores and about 15% was respired as carbon dioxide. The result is compared with an earlier report that carbon 1 of valerate is more extensively released as carbon dioxide and less extensively incorporated into spore components. Glutamic acid, glutamine, γ-aminobutyric acid, and alanine of high specific activity were isolated. It was estimated from partial degradation that more than one-half of the carbon-14 of glutamic acid occurred in position 4 and that carbon 5 was very weakly labelled. Citric acid was also of high specific activity and was labelled predominantly in the internal carbons.It is concluded that respiring rust spores utilize externally supplied valerate by β-oxidation, which releases carbons 1 and 2 in a form which is metabolized as acetate by the tricarboxylic acid cycle.


1964 ◽  
Vol 42 (6) ◽  
pp. 883-888 ◽  
Author(s):  
S. Suryanarayanan ◽  
W. B. McConnell

When uredospores of Puccinia graminis var. tritici (race 15B) were incubated at pH 6.2 in phosphate buffer containing either acetate-1-C14or -2-C14, about 12% of the radioactivity was removed from the solution in a period of 3 hours. Respired carbon dioxide contained about 45% and 22% of the carbon-14 taken up as acetate-1-C14and acetate-2-C14, respectively. Incorporation of carbon-14 into spore components was considerably higher with acetate-2-C14than with acetate-1-C14. With either tracer most of the radioactivity in water-soluble spore materials was accounted for in amino acids and neutral substances. Glutamic acid was particularly radioactive and accounted for about 40% of the radioactivity in the amino acid fraction. Incorporation of carbon-14 into the glutamic acid skeleton was consistent with the view that both the tricarboxylic acid cycle and the glyoxalate cycle were functioning.


1961 ◽  
Vol 39 (10) ◽  
pp. 1559-1566 ◽  
Author(s):  
H. Reisener ◽  
W. B. McConnell ◽  
G. A. Ledingham

When uredospores of Puccinia graminis var. tritici race 15B were shaken in a medium containing M/30 phosphate buffer, pH 6.2, and valerate-1-C14, 97% of the radioactivity was removed from the solution in a period of 3 hours. Fifty-five per cent of the carbon-14 was released as carbon dioxide, and 42% was incorporated into the spores. Carbon-14 was found in many cellular components but the water-soluble fraction accounted for 48% of the tracer in the spores. About two thirds of the water-soluble carbon-14 was in a fraction containing amino acids, amides, and peptides, with glutamic acid, glutamine, and γ-aminobutyric acid being highly radioactive. Carbon-5 of glutamic acid and carbon-1 of γ-aminobutyric acid were particularly radioactive. In addition carbon-1 of glutamic acid was appreciably radioactive. The results are consistent with the view that γ-aminobutyric acid was formed by decarboxylation of glutamic acid and that glutamic acid became labelled as a result of β-oxidation of the valerate-1-C14 to yield acetate-1-C14 which in turn was metabolized by the tricarboxylic acid cycle.


1964 ◽  
Vol 42 (2) ◽  
pp. 187-193 ◽  
Author(s):  
W. B. McConnell ◽  
A. J. Finlayson

The metabolism of propionic acid by maturing wheat plants was investigated by use of the radioactive tracers propionate-1-C14, -2-C14, and -3-C14. Carbon 2 of propionate was most extensively incorporated into kernel components and yielded kernel protein of high specific activity, glutamic acid being particularly radioactive. Carbon 3 was also preferentially incorporated into glutamic acid but was not as efficient in this regard as was carbon 2. Carbon 1 of propionate was extensively respired as carbon dioxide. It did not label glutamic acid extensively. Partial degradation of glutamic acid from kernel protein hydrolyzates showed that carbon 1 of propionate labelled carbon 1 of glutamate more than it did other glutamate carbons. Carbon 2 of propionate preferentially labelled carbon 4 of glutamate and carbon 3 preferentially labelled carbon 5 of glutamate. Similar data were obtained by examining the carbon-14 distribution in free glutamic acid obtained from wheat seedlings labelled with radioactive propionate-1-C14, -2-C14, and -3-C14.The results are interpreted as evidence that propionate is degraded by conversion of carbon 1 to carbon dioxide and by utilization of carbons 2 and 3 as acetate, with carbon 3 behaving as the carboxyl carbon of acetate. They accord with views on the mode of propionate metabolism derived from studies with plant tissue slices.


1963 ◽  
Vol 41 (6) ◽  
pp. 1367-1371 ◽  
Author(s):  
S. N. Nigam ◽  
W. B. McConnell

When generally labelled lysine-C14 or α-aminoadipic acid-6-C14 was administered to wheat seedlings 48% and 57%, respectively, of the carbon-14 was recovered in water-soluble materials. An additional 39% of the lysine carbon-14 was found in the insoluble residue whereas with α-aminoadipic acid-6-C14 only 11% of the carbon-14 was in the residue. When lysine-C14 was administered, lysine, pipecolic acid, and α-aminoadipic acid had high specific activities while glutamic acid and some related substances contained significant amounts of carbon-14. By contrast, when α-aminoadipic acid-6-C14 was used as tracer the lysine and pipecolic acid isolated were weakly labelled, although α-aminoadipic acid of very high specific activity was recovered from the tissues. Appreciable carbon-14 was also found in the glutamic acid, 63% of this being in position-5.The data are taken as evidence that α-aminoadipic acid and pipecolic acid are on the pathway of lysine metabolism, with acetate being a product of further degradation. The results provide no evidence that α-aminoadipic acid can serve as a precursor to lysine.


1963 ◽  
Vol 41 (1) ◽  
pp. 1367-1371 ◽  
Author(s):  
S. N. Nigam ◽  
W. B. McConnell

When generally labelled lysine-C14 or α-aminoadipic acid-6-C14 was administered to wheat seedlings 48% and 57%, respectively, of the carbon-14 was recovered in water-soluble materials. An additional 39% of the lysine carbon-14 was found in the insoluble residue whereas with α-aminoadipic acid-6-C14 only 11% of the carbon-14 was in the residue. When lysine-C14 was administered, lysine, pipecolic acid, and α-aminoadipic acid had high specific activities while glutamic acid and some related substances contained significant amounts of carbon-14. By contrast, when α-aminoadipic acid-6-C14 was used as tracer the lysine and pipecolic acid isolated were weakly labelled, although α-aminoadipic acid of very high specific activity was recovered from the tissues. Appreciable carbon-14 was also found in the glutamic acid, 63% of this being in position-5.The data are taken as evidence that α-aminoadipic acid and pipecolic acid are on the pathway of lysine metabolism, with acetate being a product of further degradation. The results provide no evidence that α-aminoadipic acid can serve as a precursor to lysine.


1957 ◽  
Vol 35 (1) ◽  
pp. 1259-1266 ◽  
Author(s):  
W. B. McConnell

Radioactive wheat seeds, obtained by injecting acetate-C14 into the stems of the parent plants, were germinated in the absence of light and nutrient and the fate of the carbon-14 was observed. Carbon respired as carbon dioxide had a higher specific activity than any of the major seed components except protein. Variations were found in the patterns by which material was transferred from the kernel to new tissue as reflected in a comparison of the activity of various components. Glutamic acid was the most active compound isolated either from the original seeds or from the new tissues. This observation, together with similarities noted in the intramolecular distribution of carbon-14 in glutamic acid of new tissue and seed residues, indicated that glutamic acid was reutilized for the biosynthesis of seedling protein. Changes in the labelling of glutamic acid during transfer to new tissue are qualitatively in accord with the idea that at least some of the amino acid is used after re-entry into the tricarboxylic acid cycle.


1957 ◽  
Vol 35 (12) ◽  
pp. 1259-1266 ◽  
Author(s):  
W. B. McConnell

Radioactive wheat seeds, obtained by injecting acetate-C14 into the stems of the parent plants, were germinated in the absence of light and nutrient and the fate of the carbon-14 was observed. Carbon respired as carbon dioxide had a higher specific activity than any of the major seed components except protein. Variations were found in the patterns by which material was transferred from the kernel to new tissue as reflected in a comparison of the activity of various components. Glutamic acid was the most active compound isolated either from the original seeds or from the new tissues. This observation, together with similarities noted in the intramolecular distribution of carbon-14 in glutamic acid of new tissue and seed residues, indicated that glutamic acid was reutilized for the biosynthesis of seedling protein. Changes in the labelling of glutamic acid during transfer to new tissue are qualitatively in accord with the idea that at least some of the amino acid is used after re-entry into the tricarboxylic acid cycle.


1963 ◽  
Vol 41 (3) ◽  
pp. 737-743 ◽  
Author(s):  
H. Reisener ◽  
A. J. Finlayson ◽  
W. B. McConnell ◽  
G. A. Ledingham

When uredospores of wheat stem rust were shaken for 3 hours with phosphate buffer (pH 6.2) containing propionate-1-C14, -2-C14, or -3-C14, about 55% of the carbon-14 was removed from the solution. With propionate-1-C14, most of the carbon-14 taken up was released as carbon dioxide-C14, whereas about 20% and 31% of propionate carbon 2 and carbon 3, respectively, was incorporated into the spores. The specific activity of a fraction consisting of the free amino acids of a hot-alcohol and hot-water extract of the spores increased markedly with increase in the position number of propionate in which the carbon-14 was located. A similar relation was observed for other fractions such as soluble carbohydrates, ether-soluble material, organic acids, and insoluble residue from spores. The most active amino acids isolated were glutamic acid, γ-aminobutyric acid, and alanine. Partial degradations showed that with propionate-2-C14 the carboxyl groups of glutamic acid were especially radioactive, whereas with propionate-3-C14 the internal carbons were most radioactive.It is concluded that propionate metabolism in the rust spores involved conversion of carbon 1 to carbon dioxide, and utilization of carbons 2 and 3 as acetate with carbon 2 behaving as the carboxyl carbon.


1960 ◽  
Vol 38 (1) ◽  
pp. 33-41 ◽  
Author(s):  
W. B. McConnell ◽  
R. Nath ◽  
J. F. T. Spencer

The incorporation of carbons 1, 2, and 3 of pyruvate into maturing plants has been compared by use of pyruvate-1-C14, -2-C14, and -3-C14 as tracers. The carbon-14 content of kernel proteins and lipids increased markedly when pyruvate was labelled in higher-number positions. The effect was strikingly demonstrated in the glutamic acid from the protein in which the specific activity varied in the proportion 1:5:10.5 when pyruvate labelled in the 1, 2, or 3 position respectively was administered. A small amount of administered pyruvate appeared to be utilized as the intact carbon skeleton for biosynthesis of starch and of alanine. It is considered, however, that most of the injected pyruvate undergoes decarboxylation, carbon-1 being utilized as carbon dioxide and carbons 2 and 3 as acetate.


Sign in / Sign up

Export Citation Format

Share Document