soluble carbohydrates
Recently Published Documents


TOTAL DOCUMENTS

1005
(FIVE YEARS 247)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Fengyuan Yang ◽  
Yanping Wang ◽  
Shanshan Zhao ◽  
Changsong Feng ◽  
Xiaomiao Fan

The aim of this study was to investigate effects of wilting and Lactobacillus plantarum inoculation on the dynamics of the fermentation products, residual non-structural carbohydrates, and bacterial communities in alfalfa silage. Fresh and wilted alfalfa were ensiled with and without L. plantarum for 10, 30, 60, and 90 days. A high-throughput sequencing method for absolute quantification of 16S rRNA was adopted to determine the bacterial community composition at different ensiling periods. For the wilted silage, the bacterial community, pH value, and ammonia nitrogen concentration remained stable in the silage at 30 days. L. plantarum inoculation accelerated lactic acid fermentation and altered the predominant genus in the wilted silage as compared with the non-inoculated group. For the non-wilted group, fast consumption of water-soluble carbohydrates (WSCs) was observed at 10 days in the non-inoculated silage along with rapid growth of undesirable Hafnia. L. plantarum inoculation inhibited growth of Hafnia at 10 days in the non-wilted silage. Clostridia fermentation occurred in the non-wilted silage at 90 days, as indicated by an increased pH, formation of butyric acid (BA), and apparent abundance of genera belonging to Clostridia. L. plantarum inoculation inhibited BA accumulation and growth of Garciella in the non-wilted silage at 90 days as compared with the non-wilted silage without inoculation, but had little effect on the growth of Clostridium sensu stricto. Overall, the high moisture content of the non-wilted alfalfa silage led to rapid consumption of WSCs and growth of harmful microorganisms at the early stage of ensiling, resulting in poor fermentation quality. Wilting and L. plantarum inoculation both improved fermentation quality and inhibited the growth of spoilage microorganisms in alfalfa silage, while L. plantarum inoculation alone failed to achieve optimum fermentation quality of non-wilted alfalfa silage.


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Zhi-Yuan Ma ◽  
Emilio Ungerfeld ◽  
Zhu Ouyang ◽  
Xiao-Ling Zhou ◽  
Xue-Feng Han ◽  
...  

Sweet corn is a feed resource with a high content of water-soluble carbohydrates (WSC) available for ruminant production. This study was conducted to investigate the effect of inoculation with Lactobacillus plantarum on fermentation and nutritional quality of sweet corn silage. Sweet corn whole plant (WP) and sweet corn stover (CS) were ensiled in mini silos with or without inoculation of L. plantarum. Proximate composition and fermentation variables, and composition of the bacterial community, were evaluated before ensiling and at the end of the first, second, and third month after ensiling. There was fiber degradation in CS silage after three months of ensilage, but not in WP silage. Inoculation of WP silage, but not of CS silage, with L. plantarum, increased starch content. The relative abundance of genus Lactobacillus was increased by inoculation with L. plantarum by 14.2% and 82.2% in WP and CS silage, respectively. Inoculation with L. plantarum was not necessary to achieve adequate fermentation of either WP or CS silage, as the abundance of native lactic acid bacteria in both materials seemed suitable for adequate fermentation. That said, increased starch content in WP resulting from inoculation with L. plantarum can increase the nutritive value of WP for ruminants.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Hornyák ◽  
Michał Dziurka ◽  
Monika Kula-Maximenko ◽  
Jakub Pastuszak ◽  
Anna Szczerba ◽  
...  

AbstractLight-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


2022 ◽  
Vol 43 (1) ◽  
pp. 52-58
Author(s):  
S. Narayana ◽  
◽  
S. Chander ◽  
S. Doddachowdappa ◽  
S. Sabtharishi ◽  
...  

Aim: The present study was undertaken on population dynamics and estimation of protein, water-soluble carbohydrates and glycogen contents in the brown planthopper, Nilaparvata lugens to explore their migratory behaviour. Methodology: Brown planthopper populations were monitored and collected using sweep nets from 23rd standard meteorological week (SMW) to 47th SMW during 2017 and 2018 rainy seasons to understand population dynamics of the pest. The protein, water-soluble carbohydrates and glycogen contents were estimated from the pest samples collected during 36th to 44th SMW in 2017 and 2018 rainy seasons. Results: Brown planthopper population were not observed in rice farm during 23rd SMW to 28th SMW during two years of study. However, macropterous form of the pest first appeared in the farm during 29th SMW and peaked during 43rd SMW. Thereafter, population declined and disappeared after 47th SMW during both the years. Water-soluble carbohydrates and glycogen contents varied significantly different weeks which remained low during 36th-39th SMW, however, increased gradually towards the end of the rainy season 2017 and 2018. On the other hand, protein content significantly varied among different weeks unlike the trend of water-soluble carbohydrates and glycogen. Interpretation: The study revealed the absence of brown plant hopper during summer season preceding rainy season, and the accumulation of bio-chemical compounds towards the end of rainy season under Delhi environment is perhaps suggestive of migration of the pest from unknown areas during rainy season to Delhi and likely preparedness of the pest for emigration to safer areas from Delhi, respectively.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Zixuan Yu ◽  
Xiaofeng Zhang ◽  
Rong Zhang ◽  
Yan Yu ◽  
Fengbo Sun

Bamboo is much more easily attacked by fungus compared with wood, resulting in shorter service life and higher loss in storage and transportation. It has been long accepted that the high content of starch and sugars in bamboo is mainly responsible for its low mould resistance. In this paper, acetic acid, propionic acid, oxalic acid, citric acid, and hydrochloric acid were adopted to hydrothermally hydrolyze the starch in bamboo, with the aims to investigate their respective effect on the mould and blue-stain resistance of bamboo, and the optimized citric acid in different concentrations were studied. The starch content, glucose yields, weight loss, and colour changes of solid bamboo caused by the different acidic hydrolysis were also compared. The results indicated that weak acidic hydrolysis treatment was capable of improving mould-resistant of bamboo. The mould resistance increased with the increased concentration of citric acid. Bamboo treated with citric acid in the concentration of 10% could reduce the infected area ranging to 10–17%, the growth rating of which could reach 1 resistance. The content of soluble sugar and starch remained in bamboo decreased significantly from 43 mg/g to 31 mg/g and 46 mg/g to 23 mg/g, respectively, when the citric acid concentration varied from 4% to 10%. Citric acid treatments of 10% also caused a greatest surface colour change and weight loss. The results in this study demonstrated citric acid treatment can effectively reduce the starch grain and soluble sugars content and improve mould resistance of bamboo, which can be attributed to the reduction of starch grain and soluble carbohydrates (such as glucose, fructose, and sucrose, etc.) in bamboo.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Ricardo Gómez-García ◽  
Ana A. Vilas-Boas ◽  
Ana Oliveira ◽  
Manuela Amorim ◽  
José A. Teixeira ◽  
...  

Pineapple by-products (peels and stems) from fruit processing industries were evaluated to understand its potential application as a functional food. Therefore, the bioactive compounds of pineapple by-products were characterized for prebiotic and antioxidant activities. A total characterization of soluble carbohydrates profile (simples and complex carbohydrates), as well as polyphenols was performed, after removal of enzymatic fraction from pineapple crude juice, allowing the decrease of proteolytic activity and improving the other biological activities. Results showed that pineapple liquid fraction, from stem and peels, can be applied as a prebiotic enhancer, promoting the growth of five probiotic microorganisms (two strains of Lactobacillus sp. and three strains of Bifidobacterium sp.), as a single carbohydrate source. Moreover, through HPLC (High Performance Liquid Chromatography) analysis, 10 polyphenols were identified in pineapple liquid fractions, with some expected differences between both evaluated by-products. Gastrointestinal tract was simulated, in a continuous mode to understand the impact of pH changes and gastrointestinal enzymes into pineapple liquid fractions. Results showed a digestion of high molecular weight polysaccharides into small molecular weight tri-, di-, and monosaccharides. There was an increase of samples antioxidant activity through the gastrointestinal stage, followed by the release of specific polyphenols, such as chlorogenic, coumaric, and ferulic acids. The prebiotic activity did not improve throughout the simulation, in fact, the prebiotic potential decreased throughout the different stages.


2022 ◽  
Vol 13 (SPL) ◽  
Author(s):  
Arpit Gaur ◽  
Deepti Sharma ◽  
Sonia Sheoran ◽  
Sulekha Chahal ◽  
Kaveri Chaudhary ◽  
...  

2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Esra Koç

Phytophthora capsici Leon. is the main pathogen that limits the production of peppers. In this study, the effects of 1 and 10 mM proline (Pro), prior to exposure of resistant (CM-334) and susceptible (SD-8) pepper seedlings to P. capsici, on some physiological parameters were investigated. A lower Pro concentration (1 mM) was found to be more effective than 10 mM Pro in increasing the stress tolerance of the CM-334 cultivar. Namely, in CM-334 cultivar, the highest chlorophyll a, chlorophyll b, carotenoid, glucose and fructose content and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity percentage were detected on the seventh day after application of 1 mM Pro + P. capsici, while the lowest malondialdehyde (MDA) amount was measured on the third day in the same treatment. The highest ferric reducing antioxidant power (FRAP) increase was determined on the seventh day in the 10 mM Pro + P. capsici application. The effects of the same Pro treatments on the SD-8 cultivar somewhat differed; the highest amounts of chlorophyll a, chlorophyll b, anthocyanins, fructose, total protein and endogenous Pro were detected on the seventh day in the 1 mM Pro + P. capsici application, while the lowest MDA amount was measured on the third day after the 10 mM Pro + P. capsici application, the highest DPPH % and FRAP values were detected on the seventh day with 10 mM Pro + P. capsici application. Although some differences were detected between the cultivars, Pro application against the P. capsici stress in general resulted in a positive effect on photosynthetic pigments, soluble carbohydrates and antioxidant capacity in pepper. The exogenous application of Pro helped the non-resistant cultivar to overcome the stress.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 40
Author(s):  
Paula Santiago-Díaz ◽  
Argimiro Rivero ◽  
Milagros Rico ◽  
Juan Luis Gómez-Pinchetti

The biochemical composition of three novel selected microalgae strains (Chlorophyta) was evaluated to confirm their potential possibilities as new sustainably produced biomass with nutritional, functional, and/or biomedical properties. Extracts from cultured Pseudopediastrum boryanum, Chloromonas cf. reticulata, and Chloroidium saccharophilum exhibited higher radical scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazyl) when compared to butylated hydroxytoluene (BHT), but lower than butylated hydroxyanisole (BHA). Total phenolic compounds and amino acids were determined by newly developed RP-HPLC methods. Total phenolic contents, as µg g−1 of dry biomass, reached 27.1 for C. cf. reticulata, 26.4 for P. boryanum, and 55.8 for C. saccharophilum. Percentages of total analysed amino acids were 24.3, 32.1, and 18.5% of dry biomass, respectively, presenting high values for essential amino acids reaching 54.1, 72.6, and 61.2%, respectively. Glutamic acid was the most abundant free amino acid in all microalgae samples, followed by proline and lysine in C. saccharophilum and P. boryanum, and methionine and lysine in C. reticulata. Soluble carbohydrates in aqueous extracts ranged from 39.6 for C. saccharophilum to 49.3% for C. reticulata, increasing values to 45.1 for C. saccharophilum and 52.7% for P. boryanum in acid hydrolysates of dried biomass. Results confirmed the potential possibilities of these microalgae strains.


Sign in / Sign up

Export Citation Format

Share Document