Coronary endothelium-derived vasodilation during cooling and rewarming of the in situ heart

1999 ◽  
Vol 77 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Torkjel Tveita ◽  
Olav Hevrøy ◽  
Helge Refsum ◽  
Kirsti Ytrehus

The integrity of coronary vascular endothelial vasodilator function during core cooling and rewarming was investigated in a pentobarbital-anesthetized open-chest dog model. Vasodilator response was assessed as the change from baseline blood flow by injecting the endothelial-dependent vasodilator acetylcholine (ACh) (1.0 µg) or the endothelial-independent vasodilator nitroglycerin (NTG) (50 µg) into the left anterior descending (LAD) coronary artery. Change in blood flow was measured using a transit time ultrasonic volume flowmeter technique. During cooling and rewarming LAD blood flow was significantly decreased. After rewarming, aortic pressure was artificially elevated to reach control. This procedure restored heart work (LV-RPP, left ventricular rate pressure product) and coronary perfusion pressure, but LAD blood flow remained lowered. Ability to dilate the vascular bed supplied by LAD, after injections of ACh or NTG, was present both during cooling and rewarming. At 25°C coronary blood flow (LAD) increased from 3 ± 1 to 9 ± 1 mL·min-1 in response to both ACh and NTG. Posthypothermic blood flow increased from 7 ± 1 to 19 ± 2 and 20 ± 3 mL·min-1 in response to ACh and NTG, respectively. Measured as the percent change from baseline LAD blood flow, the response was not significantly different from the one obtained in prehypothermic hearts. In conclusion, coronary vasodilator function, both endothelium dependent and endothelium independent, is present but not maintained at the same level during cooling to 25°C and rewarming. In spite of the deterioration of cardiac function, no selective defect in the endothelium-dependent response was detected, either during hypothermia or after rewarming.Key words: rewarming shock, cold, temperature, coronary blood flow, acetylcholine, nitroglycerin.

1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


1985 ◽  
Vol 249 (6) ◽  
pp. H1070-H1077 ◽  
Author(s):  
I. Y. Liang ◽  
C. E. Jones

Coronary hypoperfusion was elicited in alpha-chloralose-anesthetized open-chest dogs by reducing left coronary perfusion pressure to 50 mmHg. Left coronary blood flow, as well as left ventricular oxygen extraction, oxygen consumption, and contractile force were measured. The reduction in perfusion pressure caused significant reductions in coronary flow, oxygen consumption, and peak reactive hyperemic flow. During hypoperfusion in 11 dogs, intracoronary infusion of the specific alpha 1-adrenergic antagonist prazosin (0.1 mg/min) increased coronary flow and oxygen consumption by 22 and 16%, respectively. Peak increases were observed after 6–8 min of prazosin infusion (0.6–0.8 mg prazosin), and both increases were statistically significant (P less than 0.05). In seven additional dogs, beta-adrenergic blockade with propranolol (1.0 mg ic) did not significantly affect the actions of prazosin. In five additional dogs, the specific alpha 2-adrenergic antagonist yohimbine (1.3 mg ic) in the presence of propranolol (1.0 mg ic) did not affect coronary flow or oxygen consumption during coronary hypoperfusion. Those results suggest that an alpha 1- but not an alpha 2-adrenergic constrictor tone was operative in the left coronary circulation under the conditions of these experiments.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Eric Qvigstad ◽  
Andres Neset ◽  
Theresa M Olasveengen ◽  
øystein Tømte ◽  
Morten Eriksen ◽  
...  

Purpose of the study: During advanced life support (ALS) end-tidal carbon dioxide (EtCO 2 ) reflects cardiac output (CO). A recent clinical study found an association between passive leg raising (PLR) and increased EtCO 2 during ALS. This may reflect a transient increase in pulmonary blood flow and CO, but might cause a detrimental decrease in coronary perfusion pressure (CPP). We evaluated the effect of PLR during experimental ALS in a randomized, factorial design. Materials and methods: In nine anesthetized domestic pigs (30±1.8 kg) ventricular fibrillation was induced electrically. After 3 minutes of no-flow, mechanical chest compressions (5cm @ 100 min -1 ) were started. During four 5-minute segments of CPR we measured CO, EtCO 2 , perfusion pressures, carotid and cerebral cortical microcirculatory blood flow (MBF) and CPP (the average of the positive pressure difference between decompression aortic pressure (AP) and right atrial pressure (RAP)) at minute 2 and 4. Interventions were provided in a randomized sequence with PLR vs supine position, with or without epinephrine (0.5mg iv). Values are given as mean±standard deviation. Results: PLR did not increase EtCO2 compared to supine position (3.1±0.7 vs 3.0±0.8 kPa), but CO was minimally increased from 1.1±0.3 to 1.2±0.3 Lmin -1 ,(p=0.003). PLR did not significantly increase AP (57±15 vs. 48±18 mmHg, p=0.3), but RAP was higher (43±10 vs. 31±7, p=0.003). However, no difference was found in CPP due to marked variation in both groups (median(range): PLR 20 (9,43) and supine 17(9,58)). The effect of epinephrine during this experimental setup was minimal. Conclusion: We did not find a positive effect of PLR during experimental ALS, but there were no obviously detrimental effects either.


1987 ◽  
Vol 253 (5) ◽  
pp. H1271-H1278 ◽  
Author(s):  
W. P. Miller ◽  
N. Shimamoto ◽  
S. H. Nellis ◽  
A. J. Liedtke

We determined the independent influence of coronary hyperperfusion on myocardial metabolism in isolated and intact hearts. In an isovolumic blood-perfused rat heart preparation working against a left ventricular (LV) balloon, the effect of increasing coronary perfusion pressure from 100 to 150 mmHg was assessed. In three groups of rat hearts LV volume was fixed to obtain LV peak pressures of 42 +/- 3, 101 +/- 5, and 130 +/- 6 mmHg. With coronary hyperperfusion, LV pressure increased 27, 18, and 16%, LV maximum time derivative of pressure (dP/dt) increased 39, 20, and 22%, and myocardial O2 consumption (VO2) increased 16, 17, and 33%, respectively. In a fourth group, LV peak pressure was held constant at 92 +/- 4 mmHg during coronary hyperperfusion by decreasing LV volume. In this group, despite an increase in coronary blood flow of 48%, there was no significant difference in LV maximum dP/dt or myocardial VO2. Thus, in isolated rat hearts, coronary hyperperfusion was not an independent stimulus to myocardial VO2. To further test this, the effect of coronary hyperperfusion on myocardial metabolism was studied in an intact working swine heart preparation where the cardiac output was fixed with a right heart bypass circuit. Fatty acid oxidation in the left anterior descending bed was assessed by production of 14CO2 from [14C(U)]palmitate. A comparison of coronary perfusion 106 +/- 5 vs. 197 +/- 5 mmHg resulted in no significant change in global LV function, including LV internal diameter. Despite a 70% increase in coronary blood flow, there was no significant change in myocardial VO2 or fatty acid utilization.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 249 (2) ◽  
pp. H337-H343 ◽  
Author(s):  
J. V. Reid ◽  
B. R. Ito ◽  
A. H. Huang ◽  
C. W. Buffington ◽  
E. O. Feigl

The transmural distribution of coronary blood flow was studied during vagal stimulation in closed-chest, morphine- and alpha-chloralose-anesthetized dogs. The left main coronary artery was cannulated and perfused at constant pressure. Bradycardia during vagal stimulation was prevented by atrioventricular heart block and ventricular pacing. Beta-adrenergic receptors were blocked with propranolol (1 mg/kg iv), and aortic pressure was stabilized by means of a pressure reservoir. Regional myocardial blood flow was measured with 9-micron radioactive microspheres during vagal stimulation and during intracoronary acetylcholine infusion. Vagal stimulation increased coronary blood flow uniformly across the left ventricular wall. In contrast, intracoronary acetylcholine infusion, at a rate selected to increase total flow to the same degree, vasodilated the subendocardium more than the subepicardium, increasing the inner/outer blood flow ratio. It is concluded that both vagal activation and acetylcholine produce coronary vasodilation that is independent of left ventricular preload, afterload, and heart rate. Acetylcholine vasodilation preferentially vasodilates the subendocardium, increasing the inner/outer flow ratio, but vagal stimulation produces uniform vasodilation across the left ventricular wall.


1989 ◽  
Vol 257 (1) ◽  
pp. H132-H140 ◽  
Author(s):  
M. Hori ◽  
M. Kitakaze ◽  
J. Tamai ◽  
K. Iwakura ◽  
A. Kitabatake ◽  
...  

To determine whether alpha 2-adrenoceptor stimulation can augment adenosine-induced coronary vasodilation, 34 open-chest dogs were studied. When a small dose of clonidine (up to 0.24 micrograms.kg-1.min-1 ic) was administered under beta-adrenoceptor blockade, coronary blood flow [312 +/- 16 (SE) ml.100 g-1.min-1] maximally induced by intracoronary infusion of adenosine was further increased (P less than 0.05) by 66 +/- 16 ml.100 g-1.min-1, despite no significant changes in coronary perfusion pressure, myocardial oxygen consumption, and coronary venous adenosine concentration. However, when a larger dose of clonidine (0.36–0.60 micrograms.kg-1.min-1) was infused, adenosine-induced flow progressively decreased. This biphasic action of the alpha 2-adrenoceptor activity was also observed when the dose of norepinephrine was increased during alpha 1-adrenoceptor blockade with prazosin. Norepinephrine up to 0.24 micrograms.kg-1.min-1 (ic) further increased adenosine-induced coronary blood flow by 24 +/- 5% (P less than 0.001), whereas hyperemic flow was decreased by a larger dose of norepinephrine. In contrast to the alpha 2-adrenoceptor stimulation, the alpha 1-adrenoceptor stimulation (norepinephrine with yohimbine) progressively decreased coronary blood flow. Furthermore, with a small dose of clonidine, reactive hyperemic flow significantly increased compared with that without clonidine (303 +/- 13 vs. 355 +/- 13 ml.100 g-1.min-1, P less than 0.001), but a larger dose of clonidine adversely reduced reactive flow (254 +/- 18 ml.100 g-1.min-1, P less than 0.001). Adenosine release during reactive hyperemia with and without intracoronary infusions of clonidine were not altered significantly.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 107 (4) ◽  
pp. 361-367 ◽  
Author(s):  
E. Rooz ◽  
T. F. Wiesner ◽  
R. M. Nerem

A computer model and numerical method for calculating left epicardial coronary blood flow has been developed. This model employs a finite-branching geometry of the coronary vasculature and the one-dimensional, unsteady equations for flow with friction. The epicardial coronary geometry includes the left main and its bifurcation, the left anterior descending and left circumflex coronary arteries, and a selected number of small branches. Each of the latter terminate in an impedance, whose resistive component is related to intramyocardial compression through a linear dependence on left ventricular pressure. The elastic properties of the epicardial arteries are taken to be non-linear and are prescribed by specifying the local small-disturbance wave speed. The model allows for the incorporation of multiple stenoses as well as aorto-coronary bypasses. Calculations using this model predict pressure and flow waveform development and allow for the systematic investigation of the dependence of coronary flow on various parameters, e.g., peripheral resistance, wall properties, and branching pattern, as well as the presence of stenoses and bypass grafts. Reasonable comparison between calculations and earlier experiments in horses has been obtained.


1981 ◽  
Vol 240 (6) ◽  
pp. H941-H946 ◽  
Author(s):  
G. J. Gross ◽  
J. D. Buck ◽  
D. C. Warltier

The role of coronary muscarinic receptors in the distribution of transmural blood flow across the left ventricular wall of the working heart was studied in anesthetized open-chest dogs. Tissue blood flow in subepicardium, midmyocardium, and subendocardium was determined with radioactive microspheres before and during activation of muscarinic vasodilator receptors by intracoronary infusions of acetylcholine. Myocardial and coronary vascular beta-receptors were blocked by sotalol (2.0 mg/kg iv). Equivalent submaximal coronary vasodilator doses of acetylcholine and adenosine were compared for effects on transmural blood flow. Intracoronary infusions of acetylcholine (5.0 and 10.7 micrograms/min) produced a dose-related increase in the subendocardial-subepicardial blood flow ratio (endo/epi) from 1.07 to 1.32 and 1.57, respectively. A progressively larger decrease in coronary vascular resistance occurred in the subendocardium than midmyocardium or subepicardium following acetylcholine administration. In contrast, intracoronary administration of adenosine (54.4 micrograms/min) produced no change in endo/epi. Atropine effectively blocked acetylcholine-induced coronary vasodilation but not vasodilation produced by adenosine. Neither agent affected heart rate, left ventricular pressure, coronary perfusion pressure, or myocardial contractility. These results suggest that activation of muscarinic coronary vasodilator receptors redistributes blood flow preferentially to the subendocardium independent of cardiac mechanical influences.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Mathias Zuercher ◽  
Ronald W Hilwig ◽  
Jon Nysaether ◽  
Vinay M Nadkarni ◽  
Marc D Berg ◽  
...  

Background : Incomplete chest recoil during cardiopulmonary resuscitation (CPR) (ie, leaning on the chest during the decompression phase) is purported to decrease venous return, and thereby decrease forward blood flow. Aim To determine the effect of 10% and 20% lean on hemodynamics during piglet CPR. Methods : 10 piglets (10.7±1.2 kg) were anesthetized with isoflurane and instrumented with micromanometer-tipped catheters in the right atrium (RA) and aorta (Ao). After induction of ventricular fibrillation, CPR was provided in three-minute epochs with no lean, 10% lean, or 20% lean while aortic systolic pressure (AoS) was targeted at 80–90 mmHg. Because the mean force to attain 80 –90 mm Hg AoS was 18 kg in preliminary studies, 10% and 20% lean were provided as 1.8 and 3.6 kg weights on the chest, respectively. Left ventricular myocardial blood flow (MBF) and cardiac index (CI) were determined by fluorescent, color-microsphere technique. Statistics: paired t -test and repeated measurement ANOVA for parametric, Wilcoxon Rank Sum Test and Friedman’s ANOVA for non-parametric data. Results : 10% and 20% lean resulted in higher right atrial diastolic pressure (RAD) and lower coronary perfusion pressure (CPP) than no lean. Hemodynamics were not different with 10% lean vs. 20% lean. Mean 10%–20% lean resulted in substantially lower MBF and CI than no lean (Table ). Conclusions : 10–20% leaning during CPR increases RAD, decreases CPP, and substantially decreases MBF and CI. Table


Sign in / Sign up

Export Citation Format

Share Document