Stable-isotope and electron-microscopic evidence that cyamids (Crustacea: Amphipoda) feed on whale skin

2000 ◽  
Vol 78 (5) ◽  
pp. 721-727 ◽  
Author(s):  
Donald M Schell ◽  
Victoria J Rowntree ◽  
Carl J Pfeiffer

Cyamids (Crustacea: Amphipoda) are found only on whales. Observational evidence and the morphology of the mouthparts have indicated that whale skin is the primary food for these organisms. It has also been suggested, however, that the cyamids may be feeding on epidermal diatoms and meiofauna associated with the skin or using the whales as transport to regions of high zooplankton densities, where small pelagic organisms are captured while the whales feed. Here we report electron-microscopic and isotopic evidence that whale skin was ingested and assimilated by cyamids. Stable carbon and nitrogen isotope ratios of cyamids and whale skin from six species of whales were compared with those of zooplankton from the regions through which the whales migrate, to infer the most likely food sources. In all cases, cyamid isotope ratios closely matched those of the whale skin and not those of the zooplankton, again indicating that whale skin was the predominant food source. Unlike most other carnivorous organisms, cyamids do not show a trophic enrichment of δ15N, a trait also found in other species of Amphipoda.

1989 ◽  
Vol 31 (3) ◽  
pp. 407-422 ◽  
Author(s):  
Stanley H. Ambrose ◽  
Michael J. DeNiro

AbstractStable carbon and nitrogen isotope ratios have been determined for tooth collagen of 27 prehistoric herbivores from a rock shelter in the central Rift Valley of Kenya. Collagen samples whose isotope ratios were not altered by diagenesis were identified using several analytical methods. During the later Holocene, when the climate was as dry or drier than at present, the isotopic compositions of individual animals are similar to those of modern individuals of the same species. During the earlier Holocene, when the climate was wetter than at present, the δ15N and δ13C values are lower than those for their modern counterparts. When diagenetic factors can be discounted and adequate modern comparative data are available, stable isotope analysis of herbivore teeth and bones can be used to evaluate prehistoric climate and habitat conditions.


Author(s):  
Sun_Yong Ha ◽  
Won-Ki Min ◽  
Dong-Sung Kim ◽  
Kyung-Hoon Shin

Stable carbon and nitrogen isotope ratios of benthic invertebrates and their potential food sources, such as suspended particulate organic matter (POM), benthic microalgae, attached algae and seagrass, were identified in Dong-dae Bay during the winter. The carbon stable isotope ratios demonstrate that filter feeders, such as oysters (−19.5 ± 1.0‰), use benthic microalgae (−21.2 ± 0.2‰) as a major food, and polychaetes such as Glycera spp. (−14.0 ± 0.6 ‰) preferentially use meiofauna, such as nematodes (−14.0 ± 0.4‰) and copepods (−13.3 ± 1.0‰). These meiofauna may feed on mixed resources (including bacteria) with the isotope ratios between benthic microalgae (−21.2 ± 0.2‰) and seagrass (−9.3 ± 01.0‰). These findings are consistent with the trophic enrichment in the nitrogen isotope ratios (by 3–4‰) between consumers and food sources. Moreover, the results of the MixSIR model based on the observed isotope ratios suggest a large seagrass contribution to the food sources of benthic organisms such as meiofauna (~53.7–62.6%) and macrobenthos (~41.1–68%) through the food web. This model additionally suggests a relatively large contribution of benthic microalgae to the food sources of filter feeders (i.e. 26.4% for oysters).


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


2019 ◽  
Vol 33 (9) ◽  
pp. 831-838 ◽  
Author(s):  
Michael A. Schillaci ◽  
Jessica Lintlop ◽  
Monika Sumra ◽  
Mark Pizarro ◽  
Lisa Jones‐Engel

2019 ◽  
Vol 105 ◽  
pp. 59-69 ◽  
Author(s):  
Ana Curto ◽  
Patrick Mahoney ◽  
Anne-France Maurer ◽  
Cristina Barrocas-Dias ◽  
Teresa Fernandes ◽  
...  

Author(s):  
Linda Reynard

Stable isotope ratios of bone collagen have been used to determine trophic levels in diverse archaeological populations. The longest established and arguably most successful isotope system has been nitrogen, followed by carbon, and more recently hydrogen. These trophic level proxies rely on a predictable change in isotope ratio with each trophic level step; however, this requirement may not always be met, which can lead to difficulties in interpreting archaeological evidence. In agricultural communities, in particular, there are several possible complications to the interpretation of nitrogen and carbon isotopes. Recent approaches to overcome these limitations include better quantification and understanding of the influences on consumer isotope ratios; inclusion of evidence from plant remains; further investigation of apatite δ13C—collagen δ13C spacing in bones; measurement of carbon and nitrogen isotope ratios in individual amino acids, rather than collagen; and development of other stable isotope proxies for trophic level, such as hydrogen isotopes.


2017 ◽  
Vol 160 ◽  
pp. 150-161 ◽  
Author(s):  
Jonathan Jürgensen ◽  
Dorothée G. Drucker ◽  
Anthony J. Stuart ◽  
Matthias Schneider ◽  
Bayarbaatar Buuveibaatar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document