scholarly journals Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies

Author(s):  
J. Dias de Deus ◽  
A. S. Hirsch ◽  
C. Pajares ◽  
R. P. Scharenberg ◽  
B. K. Srivastava
2020 ◽  
Vol 29 (01) ◽  
pp. 2050001
Author(s):  
Abhisek Saha ◽  
Soma Sanyal

We study the vorticity patterns in relativistic heavy ion collisions with respect to the collision energy. The collision energy is related to the chemical potential used in the thermal — statistical models that assume approximate chemical equilibrium after the relativistic collision. We use the multiphase transport model (AMPT) to study the vorticity in the initial parton phase as well as the final hadronic phase of the relativistic heavy ion collision. We find that as the chemical potential increases, the vortices are larger in size. Using different definitions of vorticity, we find that vorticity plays a greater role at lower collision energies than at higher collision energies. We also look at other effects of the flow patterns related to the shear viscosity at different collision energies. We find that the shear viscosity obtained is almost a constant with a small decrease at higher collision energies. We also look at the elliptic flow as it is related to viscous effects in the final stages after the collision. Our results indicate that the viscosity plays a greater role at higher chemical potential and lower collision energies.


Sign in / Sign up

Export Citation Format

Share Document