scholarly journals Charged radiating stars with Lie symmetries

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
G. Z. Abebe ◽  
S. D. Maharaj

Abstract We consider the general model of an accelerating, expanding and shearing radiating star in the presence of charge. Using a new set of variables arising from the Lie symmetries of differential equations we transform the boundary equation into ordinary differential equations. We present several new exact models for a charged gravitating sphere. A particular family of solution may be interpreted as a generalised Euclidean star in the presence of the electromagnetic field. This family admits a linear barotropic equation of state. In the uncharged limit, we regain general relativistic stellar models where proper and areal radii are equal, and its generalisations. Our group theoretical approach selects the physically important cases of Euclidean stars and equations of state.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2900
Author(s):  
Matteo Gorgone ◽  
Francesco Oliveri

In this paper, within the framework of the consistent approach recently introduced for approximate Lie symmetries of differential equations, we consider approximate Noether symmetries of variational problems involving small terms. Then, we state an approximate Noether theorem leading to the construction of approximate conservation laws. Some illustrative applications are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1018
Author(s):  
Andronikos Paliathanasis

We investigate the relation of the Lie point symmetries for the geodesic equations with the collineations of decomposable spacetimes. We review previous results in the literature on the Lie point symmetries of the geodesic equations and we follow a previous proposed geometric construction approach for the symmetries of differential equations. In this study, we prove that the projective collineations of a n+1-dimensional decomposable Riemannian space are the Lie point symmetries for geodesic equations of the n-dimensional subspace. We demonstrate the application of our results with the presentation of applications.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 217
Author(s):  
Daniel J. Arrigo ◽  
Joseph A. Van de Grift

It is generally known that Lie symmetries of differential equations can lead to a reduction of the governing equation(s), lead to exact solutions of these equations and, in the best case scenario, lead to a linearization of the original equation. In this paper, we consider a model from optimal investment theory where we show the governing equation possesses an extensive contact symmetry and, through this, we show it is linearizable. Several exact solutions are provided including a solution to a particular terminal value problem.


Sign in / Sign up

Export Citation Format

Share Document