Nonclassical correlations in two-qubit Ising model with an arbitrary magnetic field: Local quantum Fisher information and local quantum uncertainty

2021 ◽  
Vol 136 (6) ◽  
Author(s):  
R. A. Abdelghany ◽  
A.-B. A. Mohamed ◽  
M. Tammam ◽  
A.-S. F. Obada
2020 ◽  
Vol 66 (4 Jul-Aug) ◽  
pp. 525
Author(s):  
M. Chávez-Huerta ◽  
F. Rojas

Green sulfur bacteria is a photosynthetic organism whose light-harvesting complex accommodates a pigment-protein complex called Fenna-Matthews-Olson (FMO). The FMO complex sustains quantum coherence and quantum correlations between the electronic states of spatially separated pigment molecules as energy moves with nearly a 100% quantum efficiency to the reaction center. We present a method based on the quantum uncertainty associated to local measurements to quantify discord-like quantum correlations between two subsystems where one is a qubit and the other is a qudit. We implement the method by calculating local quantum uncertainty (LQU), concurrence, and coherence between subsystems of pure and mixed states represented by the eigenstates and by the thermal equilibrium state determined by the FMO Hamiltonian. Three partitions of the seven chromophores network define the subsystems: one chromophore with six chromophores, pairs of chromophores, and one chromophore with two chromophores. Implementation of the LQU approach allows us to characterize quantum correlations that had not been studied before, identify the most quantum correlated subsets of chromophores, and determine that, in the strongest associations of chromophores, the LQU is a monotonically increasing function of the coherence.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850218 ◽  
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the behavior of quantum correlations in some specific Werner-like two-qubit states, where the qubit interacts individually with non-Markovian environment. We employ the local quantum uncertainty and trace distance discord to quantify the amount of quantum correlations between the evolved qubits and the corresponding analytical expressions are derived. For specific values of the parameters characterizing the whole system, the dynamics of quantum correlations exhibits collapse and revival phenomena. The influence of the non-Markovianity is also investigated to analyze the monotonic decay of quantum correlations in the limiting case of Markovian regime. Furthermore, we show that trace distance discord captures quantum correlations that cannot be revealed by local quantum uncertainty in some particular situations.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Zhi He ◽  
Chunmei Yao ◽  
Qiong Wang ◽  
Jian Zou

Sign in / Sign up

Export Citation Format

Share Document