scholarly journals Effectiveness of a UVC air disinfection system for the HVAC of an ICU

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Susana Oliveira de Souza ◽  
Antônio Américo Cardoso Jr ◽  
Aquiles Sales Craveiro Sarmento ◽  
Francesco d’Errico
Keyword(s):  
BMJ ◽  
1944 ◽  
Vol 2 (4358) ◽  
pp. 82-83
Keyword(s):  

2021 ◽  
Vol 13 (4) ◽  
pp. 2389
Author(s):  
Jung-Shun Chen

The indoor air of a hospital is always full of bacteria and viruses due to patients with different diseases. These bacteria and viruses could be highly infectious to the people in the hospital irrespective of their health conditions, and could be hazardous to the patients, their care takers, and hospital staff. Thus, keeping a good hospital air quality is very essential to the operation of the hospital. This study aims at enhancing ventilation of the interior lighting of hospitals with germicidal capabilities. Air disinfection is accomplished by adding the specially designed disinfecting filters and fans to existing embedded lamps in the hospitals. The embedded lamp has a square shape of 601 mm in width and 112 mm in thickness. In the design stage, the air flow inside the embedded lamp with the added filters and fans was investigated by numerical simulation using a computational fluid dynamics (CFD) tool. Three designs, referred to as Types 1, 2, and 3, were evaluated using steady-state CFD flow simulations. The ventilation rate of the Type 1 design was about 251.9 CMH, and 348.3 CMH for the Type 2 design by increasing the fan outlet area. However, even though the ventilation was increased by 34%, the flow field of the Type 2 design was not uniform, resulting in flows being circulated around the side locations. Thus, the Type 3 design further treats this aspect by streamlining the outlet geometry and adding flow guiding vanes to reduce flow resistance and flow unsteadiness; the corresponding air ventilation rate reached 376.3 CMH. Hence, the Type 3 design was fabricated and tested. The test results confirm that the design not only has a higher ventilation rate but also operates under a smaller pressure drop, thus accomplishing the goal of providing good air quality in the hospital environment efficiently. Moreover, the associated flow noise is reduced by about 8 dBA. Hence, both an increase in the air ventilation rate and a reduction of noise are achieved simultaneously by the present method.


2021 ◽  
Vol 97 (3) ◽  
pp. 464-465
Author(s):  
Rolf Bergman ◽  
David Brenner ◽  
Manuela Buonanno ◽  
Ewan Eadie ◽  
Paul Donald Forbes ◽  
...  
Keyword(s):  

NANO ◽  
2021 ◽  
pp. 2150088
Author(s):  
Kalthoum Chourabi ◽  
Lobna Elleuch ◽  
Salma Kloula ◽  
Ahmed Landoulsi ◽  
Abdelwaheb Chatti

Silver nanoparticles have attracted much interest from scientists to develop nanosilver-based disinfectant products due to their unique properties of high antimicrobial activity. This study focused on biosynthesis, characterization, antimicrobial and antibiofilm effects of silver nanoparticles against vegetative and starved Shigella strains. The silver nanoparticles were synthesized using the yeast Yarrowia lipolytica and characterized by ultraviolet–visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial and antibiofilm activities of silver nanoparticles were tested against the growth of vegetative and starved Shigella strains. After the addition of silver nitrate solution to the supernatant of Y. lipolytica, we noticed the appearance of a brown-black coloration that suggested the formation of silver nanoparticles. The presence of silver nanoparticles was manifested by a maximum absorption in the ultraviolet–visible range, precisely at the wavelength 420[Formula: see text]nm. The crystalline nature and the stability of silver nanoparticles were confirmed, respectively, by XRD and FTIR analysis. The antibacterial activity of silver nanoparticles showed significant toxicity on Shigella strains indicating that the starved cells were more sensitive to treatment with silver nanoparticles than vegetative cells. Surprisingly, the biofilm formation had not been inhibited by silver nanoparticles for both vegetative and starved cells. In conclusion, a new class of nanosilver containing disinfectant nanoproducts will be promising for advanced environmental treatments including air disinfection, water disinfection, surface disinfection and personal hygiene that will help to prevent the further outbreak of diseases.


1990 ◽  
Vol 142 (5) ◽  
pp. 1233-1234
Author(s):  
Richard L. Riley ◽  
Edward A. Nardell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document