Dynamic analysis of fractional-order memristive chaotic system with time delay and its application in color image encryption based on DNA encoding

Author(s):  
Zongli Yang ◽  
Dong Liang ◽  
Dawei Ding ◽  
Yongbin Hu
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yujun Niu ◽  
Xuming Sun ◽  
Cheng Zhang ◽  
Hongjun Liu

This paper investigates the anticontrol of the fractional-order chaotic system. The necessary condition of the anticontrol of the fractional-order chaotic system is proposed, and based on this necessary condition, a 3D fractional-order chaotic system is driven to two new 4D fractional-order hyperchaotic systems, respectively, without changing the parameters and fractional order. Hyperchaotic properties of these new fractional dynamic systems are confirmed by Lyapunov exponents and bifurcation diagrams. Furthermore, a color image encryption algorithm is designed based on these fractional hyperchaotic systems. The effectiveness of their application in image encryption is verified.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


2017 ◽  
Vol 90 ◽  
pp. 225-237 ◽  
Author(s):  
Abolfazl Yaghouti Niyat ◽  
Mohammad Hossein Moattar ◽  
Masood Niazi Torshiz

Sign in / Sign up

Export Citation Format

Share Document